A bold conjecture about a way in which any square of prime can be written

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I make a conjecture which states that any square of a prime greater than or equal to 7 can be written at least in one way as a sum of three odd primes, not necessarily distinct, but all three of the form $10 k+3$ or all three of the form $10 k+7$.

Conjecture:

Any square of a prime greater than or equal to 7 can be written at least in one way as a sum of three odd primes, not necessarily distinct, but all three of the form $10 k+$ 3 or all three of the form $10 k+7$.

Verifying the conjecture:

(For the first few primes greater than or equal to 7)
(Note that we will not show all ways in which a square of a prime can be written in the way mentioned but only one way, enough to confirm the conjecture)

$$
\begin{array}{ll}
: & 7^{\wedge} 2=49=13+13+23 ; \\
: & 11^{\wedge} 2=121=37+37+47 ; \\
: & 13^{\wedge} 2=169=13+43+113 ; \\
: & 17^{\wedge} 2=289=13+13+263 ; \\
: & 19^{\wedge} 2=361=7+17+337 ; \\
: & 23^{\wedge}=529=13+53+563 .
\end{array}
$$

Conjecture:

Any square of a prime $p^{\wedge} 2$, where p is greater than or equal to 7 , can be written as $p^{\wedge} 2=2 * m+n$, where m and n are distinct primes, both of the form $10 k+3$ or both of the form $10 k+7$.

Verifying the conjecture:

(For the first few primes greater than or equal to 7)
(Note that we will not show all ways in which a square of a prime can be written in the way mentioned but only one way, enough to confirm the conjecture)

```
: 7^2 = 49 = 2*13 + 23;
: 11^2 = 121 = 2*37 + 47;
    13^2 = 169 = 2*43 + 83;
    17^2 = 289 = 2*13 + 263;
    19^2 = 361 = 2*7 + 347;
    23^2 = 529 = 2*13 + 503.
```

