# Lucasian Primality Criterion for Specific Class of $k \cdot 6^{n}-1$ 

## Predrag Terzić

Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

August 27, 2014


#### Abstract

Conjectured polynomial time primality test for specific class of numbers of the form $k \cdot 6^{n}-1$ is introduced.


Keywords: Primality test, Polynomial time, Prime numbers .
AMS Classification: 11A51 .

## 1 Introduction

In 1969 Hans Riesel provided polynomial time primality test for numbers of the form $k \cdot 2^{n}-1$ with $k$ odd, $k<2^{n}$ and $n>2$, see Theorem 5 in [1]. In this note I present polynomial time primality test for numbers of the form $k \cdot 6^{n}-1$ with $k \equiv 5(\bmod 42)$ that is similar to the Riesel test.

## 2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where $m$ and $x$ are nonnegative integers .

Conjecture 2.1. Let $N=k \cdot 6^{n}-1$ such that $n>2, k>0, k \equiv 5(\bmod 42)$ and $k<6^{n}$

$$
\text { Let } S_{i}=P_{6}\left(S_{i-1}\right) \text { with } S_{0}=P_{3 k}\left(P_{3}(5)\right), \text { thus }
$$

$N$ is prime iff $S_{n-2} \equiv 0(\bmod N)$

## References

[1] Riesel, Hans (1969), "Lucasian Criteria for the Primality of $k \cdot 2^{n}-1$ ", Mathematics of Computation (AmericanMathematical Society), 23 (108): 869-875 .

