Lucasian Primality Criterion for Specific Class of $3 \cdot 2^{n}+1$

Predrag Terzić
Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

August 25, 2014

Abstract

Conjectured polynomial time primality test for specific class of $3 \cdot 2^{n}+1$ is introduced

 Keywords: Primality test , Polynomial time, Prime numbers .AMS Classification: 11A51 .

1 Introduction

In 1960 Kusta Inkeri provided unconditional, deterministic, lucasian type primality test for Fermat numbers [1] . In this note I present lucasian type primality test for specific class of numbers of the form $3 \cdot 2^{n}+1$.

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $N=3 \cdot 2^{n}+1$ such that $n>2$ and $n \equiv 1,2(\bmod 4)$

$$
\begin{gathered}
\text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } \\
S_{0}=\left\{\begin{array}{l}
P_{3}(32), \\
P_{3}(28), \\
P_{3} \text { if } n \equiv 2(\bmod 4) \\
\text { thus }
\end{array}\right. \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{gathered}
$$

References

[1] Inkeri, K., "Tests for primality", Ann. Acad. Sci. Fenn., A I 279, 119 (1960).

