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ABSTRACT

Conventionally, the Coulomb field potential Vr = 1/r is replaced by the exponentially screened potential Vr = (1/r)e-mr

to ensure that a Laplace transform of the potential gives a propagator with a mass term, whose integral gives the usual
logarithmic running with energy.  Sidney Coleman suggested the trick of treating the force-mediating propagator pho-
ton as having a mass during the calculation, and then setting the mass equal to zero at the end.  The QFT textbooks
such as Zee’s follow Coleman’s prescription.  The Laplace transform converts the Coulomb potential as a function of

radial distance, r, into a propagator Vk which is a function of momentum, k. Vk = ∫ Vr e
-krd3r.  Because we’re integrat-

ing over spherical volume, d3r, we can remember that the volume of a sphere is the integral of volume of a spherical

shell of surface area 4πr2 and thickness dr, so that d3r g 4πr2 dr, giving Vk = ∫ Vr e
-kr(4πr2 ) dr.  The substitution of  Vr

= (1/r)e-mr then gives Vk = ∫ [(1/r)e-mr] e-kr(4πr2 ) dr = 4π ∫ re-r(m + k ) dr = 1/(m + k )2, the propagator.  Integrating the

propagator by Feynman’s rules in momentum space gives logarithmic running, mvacuum = ∫Λ (α/k2)(k + me)/(k2 + me
2)

d4k = (3αme/π) ln(Λ/me).  In renormalization, this running mass term is added on to the observed electron mass,  m0.

But as demonstrated by Figure 1, there are two contributions to the propagator, one from massless field quanta which gen-

erate the bare mass that doesn’t have a running coupling, and one from massive field quanta which generate the logarith-

mic running contribution to mass which is utilized in renormalization procedures. In other words, the observed electron

mass at low energy (which remains constant at all energies below 1 Mev, where no pair production or vacuum polarization

occurs), is the integral of the massless Coulomb field potential. The Laplace transform using the Coulomb field potential

Vr = 1/r (which is experimentally valid below the IR cutoff of about 1 Mev), gives a propagator which doesn’t contain a

mass term: Vk = ∫ (1/r) e-kr(4πr2 ) dr = 4π ∫ re-rk dr = 1/k2.  Using this in Feynman’s rules: m = ∫Λ (α/k3) d4k = αΛ.

So the change in the propagator from k2 + me
2 g 1/k2 results in a physically meaningful non-running so-called “bare”

mass m0 due to the Coulomb low-energy propagator valid below the 1 Mev IR cutoff and this Coulomb portion of the field

contributes a simple interaction-current mass term, αΛ: ∫Λ α(k + me)/(k2 + me
2) d4k g ∫Λ α/k3 d4k = αΛ.

Therefore, we argue that the conventional (Schwinger) formula me = m0 + mvacuum should be revised to represent the

bare mass m0 as being the non-running mass contributed by the massless Coulomb propagator, i.e. m0 =  ∫Λ α/k3 d4k.

Figure 1: writing the mass of a particle as the sum of contributions from the Coulomb law propagator (representing the non-run-
ning mass of a particle below the IR cutoff of 1 Mev) and the logarithmic running contribution due to the vacuum polarization
screen ed potential, which results from a potential of the Klein-Gordon type, giving rise to a propagator containing a mass term.
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Note that although Coulomb potential predominates below 0.5 Mev, it still contributes mass up to the UV cutoff, Λ.

Coulomb law, Vr = 1/r gives: Vk = 1/k2, hence mass m0 = ∫Λ α/k3 d4k = αΛ.

Contribution from massive loops above IR cutoff:

screened potential Vr = (1/r)e-mr gives Vk = 1/(m + k )2,

mvacuum = ∫Λ (α/k2)(k + me)/(k2 + me
2) d4k

= (3αme/π) ln(Λ/me).
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For a single one-loop: me = m0 + mvacuum = ∫Λ α/k3 d4k + ∫Λ (α/k2)(k + me)/(k2 + me
2) d4k = αΛ + (3αme/π) ln(Λ/me)

A electron-sized mass gap in quantum field theory is given when written using a IR cutoff theory for the Lagrangian
obtained by integrating a two one-loop Feynman diagrams with massless electroweak force propagator over spacetime
up to an electroweak cutoff scale which is defined as the charged weak boson mass, Λ =  mW .  For two one-loops:

∫Λ α2(k2 + me
2)/(k2 + me

2)2] d4k g ∫Λ (α2/k3) d4k = α2Λ.

However, the integral for the Feynman diagram for mass acquisition is weighted by the ratio of the neutral Z-boson
mass to the Higgs mass, on the basis of the mechanism that when a particle core is physically accelerated, its acceler-
ation is impeded by its interaction with Z-bosons in its own field, i.e. neutral (weak) currents.  The Higgs field gives
mass to weak bosons, which then mire particles, causing mass (inertia).  If Λ = mZ = 91.19:

me = ∫Λ [(α/π)2/k3] d 4k

= mZ(α/π)2

The masses of the unstable charged leptons, and also of all hadrons (mesons and baryons) can be represented by a sim-
pler Feynman diagram propagator, containing only a first power of alpha, based on the 1-loop mass renormalization
propagator with the mass term dropped to eliminate the standard solution, i.e. the logarithmic running of mass (which
is only present at energies exceeding an IR cutoff of 1 Mev for pair production and vacuum polarization):

∫Λ [(α/k2)(k + me)/(k2 + me
2)] d4k g ∫Λ (α/k3) d4k, where: ∫Λ (α/k3) d4k = αΛ.

Ref: see page 8 of the book Supersymmetry Demystified, equations 1.2 and 1.3, where the non-logarithmic running solu-
tions for zero mass are mentioned in passing but are however dismissed as being “naive power counting,” and it is
stated that a two one-loop Feynman diagram contributes to mass for Yang-Mills fields, while only a single one-loop
contributes for Abelian fields.  Since the standard electroweak theory is in fact a mixture of linked Abelian U(1) hyper-
charge and Yang-Mills SU(2), and since mass results from this mixed symmetry breaking, it is clear that both a single
and a double one-loop mass acquisition mechanism must contribute to particle masses in the standard electroweak the-
ory.  Hence,

mn,N = ∫Λ n(N + 1)mZ α/(2π k3)  d 4k

= n(N + 1)mZ α/(2π)

= 35.0n(N + 1) Mev,

where n is the number of onshell particles (1 for leptons, 2 quarks for mesons, 3 quarks for baryons) and N is the total
number of shell-structured “effective onshell” particles created by pair production and polarization in the field field
around each onshell particle’s core.  See Table 1 for a comparison of predictions with observations.  

The muon and tauon correspond respectively with nucleon shell theory magic numbers N = 2 and 50, respectively,
while nucleons correspond to the nucleon shell theory’s magic number of N = 8.  Thus, we can use the Pauli exclusion
principle to predict relatively stable particle masses, which gives a solid basis for objectively picking out observed
quantized masses instead of using ad hoc landscape speculations, such as occur using string theory (often claimed to
be the best hope for masses).  There is a simple, understandable, predictive model for masses, based on vacuum fields:

1. Virtual fermions are radially polarized (driven further apart) by the electric field in which they formed.

2. This polarization supplies the virtual fermions energy, at the expense of electric field, which is thus partly “screened.”

3. The energy supplied to virtual fermions by their radial polarization extends their lifetime beyond Heisenberg’s h/E.

4. This supply of extra energy moves “virtual” fermions towards the real mass shell, so they briefly obey Pauli’s principle.

5. As a result of this, the “virtual” fermions become structured like electron orbits, thereby contributing quantized mass.

Different isomers are possible which allow various weak decay routes, thereby predicting the CKM matrix mechanism.

6. Because neutrinos only have weak fields, they have little pair production, accounting for their small masses.



Neutrino masses suggest that flavor oscillations are differences in virtual particle structuring. Interactions by particles with
a vacuum Higgs field are postulated in the Standard Model to produce fermion masses.  A photon is slowed and
refracted in a block of glass by the “loading” interactions of its electromagnetic field with the fields of the electrons in
the crystal lattice of glass.  Similarly, a photon passing near the sun is slowed and refracted by the interactions of its
field with the gravitation field of the sun.   In effect, the photon is “loaded” by interactions with the field quanta
through which it passes, be this an electromagnetic or gravitational field, slowing the photon and therefore providing
a quantum field theory mechanism and explanation for the phenomena of relativistic time-dilation.  Vacuum polariza-
tion is also the basis for the logarithmic runnings of force coupling strengths, i.e. effective charges and masses, with
interaction energy.  The running of mass with energy has been a standard part of QED’s renormalization procedure
since 1949.  There is nothing speculative about these observations.  This paper merely sorts out the confused muddle
created by a fog of obfuscation, it does not speculate (see reference in further reading section for further discussion of
the mechanism and hard data).
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Further reading:

“Mechanism of renormalization can predict particle masses,” N. B. Cook, vixra, 24 July 2014.


