Conjectured Primality and Compositeness Tests for Numbers of Special Forms

Predrag Terzić
Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

September 14, 2014

Abstract

Conjectured polynomial time primality and compositeness tests for numbers of special forms are introduced .

Keywords: Primality test, Compositeness test, Polynomial time, Prime numbers .
AMS Classification: 11A51 .

1 Introduction

In number theory the Riesel primality test [1] , is the fastest deterministic primality test for numbers of the form $k \cdot 2^{n}-1$ with k odd and $k<2^{n}$. The test was developed by Hans Riesel and it is based on Lucas-Lehmer test [2]. In 1960 Kusta Inkeri provided unconditional, deterministic , lucasian type primality test for Fermat numbers [3] . In 2008 Ray Melham provided unconditional , probabilistic, lucasian type primality test for generalized Mersenne numbers [4] . In 2010 Pedro Berrizbeitia ,Florian Luca and Ray Melham provided polynomial time compositeness test for numbers of the form $\left(2^{p}+1\right) / 3$, see Theorem 2 in [5]. In this note I present lucasian type primality and compositeness tests for numbers of special forms .

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are positive integers.

Conjecture 2.1. Let $N=k \cdot 2^{n}-1$ such that $n>2,3 \mid k, k<2^{n}$ and

$$
\left\{\begin{array}{l}
k \equiv 1(\bmod 10) \text { with } n \equiv 2,3(\bmod 4) \\
k \equiv 3(\bmod 10) \text { with } n \equiv 0,3(\bmod 4) \\
k \equiv 7(\bmod 10) \text { with } n \equiv 1,2(\bmod 4) \\
k \equiv 9(\bmod 10) \text { with } n \equiv 0,1(\bmod 4)
\end{array}\right.
$$

$$
\text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } S_{0}=P_{k}(3) \text {, thus }
$$

N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 2.2. Let $N=k \cdot 2^{n}-1$ such that $n>2,3 \mid k, k<2^{n}$ and

$$
\left\{\begin{array}{l}
k \equiv 3(\bmod 42) \text { with } n \equiv 0,2(\bmod 3) \\
k \equiv 9(\bmod 42) \text { with } n \equiv 0(\bmod 3) \\
k \equiv 15(\bmod 42) \text { with } n \equiv 1(\bmod 3) \\
k \equiv 27(\bmod 42) \text { with } n \equiv 1,2(\bmod 3) \\
k \equiv 33(\bmod 42) \text { with } n \equiv 0,1(\bmod 3) \\
k \equiv 39(\bmod 42) \text { with } n \equiv 2(\bmod 3)
\end{array}\right.
$$

Let $S_{i}=P_{2}\left(S_{i-1}\right)$ with $S_{0}=P_{k}(5)$, thus
N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 2.3. Let $N=k \cdot 2^{n}+1$ such that $n>2, k<2^{n}$ and

$$
\begin{aligned}
& \left\{\begin{array}{l}
k \equiv 5,19(\bmod 42) \text { with } n \equiv 0(\bmod 3) \\
k \equiv 13,41(\bmod 42) \text { with } n \equiv 1(\bmod 3) \\
k \equiv 17,31(\bmod 42) \text { with } n \equiv 2(\bmod 3) \\
k \equiv 23,37(\bmod 42) \text { with } n \equiv 0,1(\bmod 3) \\
k \equiv 11,25(\bmod 42) \text { with } n \equiv 0,2(\bmod 3) \\
k \equiv 1,29(\bmod 42) \text { with } n \equiv 1,2(\bmod 3)
\end{array}\right. \\
& \text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } S_{0}=P_{k}(5) \text {, thus } \\
& N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{aligned}
$$

Conjecture 2.4. Let $N=k \cdot 2^{n}+1$ such that $n>2, k<2^{n}$ and
$\left\{\begin{array}{l}k \equiv 1(\bmod 6) \text { and } k \equiv 1,7(\bmod 10) \text { with } n \equiv 0(\bmod 4) \\ k \equiv 5(\bmod 6) \text { and } k \equiv 1,3(\bmod 10) \text { with } n \equiv 1(\bmod 4) \\ k \equiv 1(\bmod 6) \text { and } k \equiv 3,9(\bmod 10) \text { with } n \equiv 2(\bmod 4) \\ k \equiv 5(\bmod 6) \text { and } k \equiv 7,9(\bmod 10) \text { with } n \equiv 3(\bmod 4)\end{array}\right.$

$$
\begin{aligned}
& \text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } S_{0}=P_{k}(8), \text { thus } \\
& \quad N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{aligned}
$$

Conjecture 2.5. Let $N=3 \cdot 2^{n}+1$ such that $n>2$ and $n \equiv 1,2(\bmod 4)$

$$
\begin{gathered}
\text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } \\
S_{0}= \begin{cases}P_{3}(32), & \text { if } n \equiv 1(\bmod 4) \\
P_{3}(28), & \text { if } n \equiv 2(\bmod 4)\end{cases} \\
\text { thus }
\end{gathered}
$$

Conjecture 2.6. Let $N=5 \cdot 2^{n}+1$ such that $n>2$ and $n \equiv 1,3(\bmod 4)$

$$
\begin{gathered}
\text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } \\
S_{0}=\left\{\begin{array}{l}
\left\{\begin{array}{l}
P_{5}(28), \\
P_{5}(32), \\
\text { if } n \equiv 1(\bmod 4)
\end{array}\right. \\
\text { thus }
\end{array}\right. \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod 4)
\end{gathered}
$$

Conjecture 2.7. Let $N=7 \cdot 2^{n}+1$ such that $n>2$ and $n \equiv 0,2(\bmod 4)$

$$
\begin{gathered}
\text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } \\
S_{0}=\left\{\begin{array}{lr}
P_{7}(8), & \text { if } n \equiv 0(\bmod 4) \\
P_{7}(32), & \text { if } n \equiv 2(\bmod 4)
\end{array}\right. \\
\text { thus } \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{gathered}
$$

Conjecture 2.8. Let $N=9 \cdot 2^{n}+1$ such that $n>2$ and $n \equiv 2,3(\bmod 4)$

$$
\begin{gathered}
\text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } \\
S_{0}=\left\{\begin{array}{l}
P_{9}(28), \\
P_{9}(32), \\
\text { if } n \equiv 2(\bmod 4)
\end{array}\right. \\
\text { thus } n(\bmod 4)
\end{gathered}
$$

Conjecture 2.9. Let $N=11 \cdot 2^{n}+1$ such that $n>2$ and $n \equiv 1,3(\bmod 4)$

$$
\begin{gathered}
\text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } \\
S_{0}=\left\{\begin{array}{l}
P_{11}(8), \quad \text { if } n \equiv 1(\bmod 4) \\
P_{11}(28), \quad \text { if } n \equiv 3(\bmod 4)
\end{array}\right. \text { thus }
\end{gathered}
$$

$$
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
$$

Conjecture 2.10. Let $N=13 \cdot 2^{n}+1$ such that $n>2$ and $n \equiv 0,2(\bmod 4)$

$$
\begin{gathered}
\text { Let } S_{i}=P_{2}\left(S_{i-1}\right) \text { with } \\
S_{0}= \begin{cases}P_{13}(32), & \text { if } n \equiv 0(\bmod 4) \\
P_{13}(8), & \text { if } n \equiv 2(\bmod 4)\end{cases} \\
\text { thus }
\end{gathered}
$$

N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 2.11. Let $F=2^{2^{n}}+1$ such that $n \geq 2$. Let $S_{i}=P_{4}\left(S_{i-1}\right)$ with $S_{0}=8$, thus

$$
F \text { is prime iff } S_{2^{n-1}-1} \equiv 0(\bmod F)
$$

Conjecture 2.12. Let $N=k \cdot 6^{n}-1$ such that $n>2, k>0, k \equiv 3,9(\bmod 10)$ and $k<6^{n}$

$$
\text { Let } S_{i}=P_{6}\left(S_{i-1}\right) \text { with } S_{0}=P_{3 k}\left(P_{3}(3)\right) \text {, thus }
$$

N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 2.13. Let $N=k \cdot 6^{n}-1$ such that $n>2, k>0, k \equiv 5(\bmod 42)$ and $k<6^{n}$

$$
\begin{gathered}
\text { Let } S_{i}=P_{6}\left(S_{i-1}\right) \text { with } S_{0}=P_{3 k}\left(P_{3}(5)\right), \text { thus } \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{gathered}
$$

Conjecture 2.14. Let $N=k \cdot b^{n}-1$ such that $n>2, k$ is odd, $3 \nmid k, b$ is even, $3 \nmid b, 5 \nmid b$, $k<b^{n}$.

$$
\begin{gathered}
\text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b k / 2}\left(P_{b / 2}(4)\right), \text { thus } \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{gathered}
$$

Conjecture 2.15. Let $N=k \cdot b^{n}-1$ such that $n>2, k<b^{n}$ and

$$
\begin{gathered}
\left\{\begin{array}{l}
k \equiv 3(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 0,3(\bmod 4) \\
k \equiv 3(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 0,2(\bmod 4) \\
k \equiv 3(\bmod 30) \text { with } b \equiv 6(\bmod 10) \text { and } n \equiv 0,1,2,3(\bmod 4) \\
k \equiv 3(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 0,1(\bmod 4)
\end{array}\right. \\
\text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b k / 2}\left(P_{b / 2}(5778)\right) \text {, thus } \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{gathered}
$$

Conjecture 2.16. Let $N=k \cdot b^{n}-1$ such that $n>2, k<b^{n}$ and

$$
\left\{\begin{array}{l}
k \equiv 9(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 0,1(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 0,2(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 6(\bmod 10) \text { and } n \equiv 0,1,2,3(\bmod 4) \\
k \equiv 9(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 0,3(\bmod 4)
\end{array}\right.
$$

Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b k / 2}\left(P_{b / 2}(5778)\right)$, thus
N is prime iff $S_{n-2} \equiv 0(\bmod N)$
Conjecture 2.17. Let $N=k \cdot b^{n}-1$ such that $n>2, k<b^{n}$ and

$$
\begin{gathered}
\left\{\begin{array}{c}
k \equiv 21(\bmod 30) \text { with } b \equiv 2(\bmod 10) \text { and } n \equiv 2,3(\bmod 4) \\
k \equiv 21(\bmod 30) \text { with } b \equiv 4(\bmod 10) \text { and } n \equiv 1,3(\bmod 4) \\
k \equiv 21(\bmod 30) \text { with } b \equiv 8(\bmod 10) \text { and } n \equiv 1,2(\bmod 4)
\end{array}\right. \\
\text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b k / 2}\left(P_{b / 2}(3)\right), \text { thus } \\
N \text { is prime iff } S_{n-2} \equiv 0(\bmod N)
\end{gathered}
$$

Conjecture 2.18. Let $F_{n}(b)=b^{2^{n}}+1$ such that $n>1, b$ is even, $3 \nmid b$ and $5 \nmid b$.

$$
\begin{aligned}
& \text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b / 2}\left(P_{b / 2}(8)\right) \text {, thus } \\
& \quad F_{n}(b) \text { is prime iff } S_{2^{n}-2} \equiv 0\left(\bmod F_{n}(b)\right)
\end{aligned}
$$

Conjecture 2.19. Let $N=k \cdot 3^{n}-2$ such that $n \equiv 0(\bmod 2), n>2, k \equiv 1(\bmod 4)$ and $k<3^{n}$.

$$
\text { Let } S_{i}=P_{3}\left(S_{i-1}\right) \text { with } S_{0}=P_{3 k}(4), \text { thus }
$$

If N is prime then $S_{n-1} \equiv P_{1}(4)(\bmod N)$
Conjecture 2.20. Let $N=k \cdot 3^{n}-2$ such that $n \equiv 1(\bmod 2), n>2, k \equiv 1(\bmod 4)$ and $k<3^{n}$.

> Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(4)$, thus
> If N is prime then $S_{n-1} \equiv P_{3}(4)(\bmod N)$

Conjecture 2.21. Let $N=k \cdot 3^{n}+2$ such that $n>2, k \equiv 1,3(\bmod 8)$ and $k<3^{n}$.
Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(6)$, thus
If N is prime then $S_{n-1} \equiv P_{3}(6)(\bmod N)$
Conjecture 2.22. Let $N=k \cdot 3^{n}+2$ such that $n>2, k \equiv 5,7(\bmod 8)$ and $k<3^{n}$.
Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3 k}(6)$, thus
If N is prime then $S_{n-1} \equiv P_{1}(6)(\bmod N)$
Conjecture 2.23. Let $N=k \cdot 2^{n}-c$ such that $n>2 c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$

> Let $S_{i}=P_{2}\left(S_{i-1}\right)$ with $S_{0}=P_{k}(6)$, thus
> If N is prime then $S_{n-1} \equiv-P_{\lfloor c / 2\rfloor}(6)(\bmod N)$

Conjecture 2.24. Let $N=k \cdot 2^{n}+c$ such that $n>2 c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$
Let $S_{i}=P_{2}\left(S_{i-1}\right)$ with $S_{0}=P_{k}(6)$, thus
If N is prime then $S_{n-1} \equiv-P_{\lceil c / 2\rceil}(6)(\bmod N)$
Conjecture 2.25. Let $N=k \cdot 2^{n}-c$ such that $n>2 c, k>0, c>0$ and $c \equiv 1,7(\bmod 8)$
Let $S_{i}=P_{2}\left(S_{i-1}\right)$ with $S_{0}=P_{k}(6)$, thus
If N is prime then $S_{n-1} \equiv P_{\lceil c / 2\rceil}(6)(\bmod N)$
Conjecture 2.26. Let $N=k \cdot 2^{n}+c$ such that $n>2 c, k>0, c>0$ and $c \equiv 1,7(\bmod 8)$

> Let $S_{i}=P_{2}\left(S_{i-1}\right)$ with $S_{0}=P_{k}(6)$, thus
> If N is prime then $S_{n-1} \equiv P_{\lfloor c / 2\rfloor}(6)(\bmod N)$

Conjecture 2.27. Let $N=k \cdot 10^{n}-c$ such that $n>2 c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$
Let $S_{i}=P_{10}\left(S_{i-1}\right)$ with $S_{0}=P_{5 k}\left(P_{5}(6)\right)$, thus
If N is prime then $S_{n-1} \equiv-P_{5\lfloor c / 2\rfloor}(6)(\bmod N)$

Conjecture 2.28. Let $N=k \cdot 10^{n}+c$ such that $n>2 c, k>0, c>0$ and $c \equiv 3,5(\bmod 8)$

$$
\begin{aligned}
& \text { Let } S_{i}=P_{10}\left(S_{i-1}\right) \text { with } S_{0}=P_{5 k}\left(P_{5}(6)\right) \text {, thus } \\
& \text { If } N \text { is prime then } S_{n-1} \equiv-P_{5\lceil c / 2\rceil}(6)(\bmod N)
\end{aligned}
$$

Conjecture 2.29. Let $N=k \cdot 10^{n}-c$ such that $n>2 c, k>0, c>0$ and $c \equiv 1,7(\bmod 8)$
Let $S_{i}=P_{10}\left(S_{i-1}\right)$ with $S_{0}=P_{5 k}\left(P_{5}(6)\right)$, thus
If N is prime then $S_{n-1} \equiv P_{5\lceil c / 2\rceil}(6)(\bmod N)$
Conjecture 2.30. Let $N=k \cdot 10^{n}+c$ such that $n>2 c, k>0, c>0$ and $c \equiv 1,7(\bmod 8)$
Let $S_{i}=P_{10}\left(S_{i-1}\right)$ with $S_{0}=P_{5 k}\left(P_{5}(6)\right)$, thus
If N is prime then $S_{n-1} \equiv P_{5\lfloor c / 2\rfloor}(6)(\bmod N)$
Conjecture 2.31. Let $R=\left(3^{p}-1\right) / 2$ such that $p>3$ and p is an odd prime.
Let $S_{i}=P_{3}\left(S_{i-1}\right)$ with $S_{0}=P_{3}(4)$, thus
If R is prime then $S_{p-1} \equiv P_{3}(4)(\bmod R)$
Conjecture 2.32. Let $R=\left(10^{p}-1\right) / 9$ such that p is an odd prime .
Let $S_{i}=P_{10}\left(S_{i-1}\right)$ with $S_{0}=P_{5}(6)$, thus
If R is prime then $S_{p-1} \equiv P_{5}(6)(\bmod R)$
Conjecture 2.33. Let $N=b^{n}-b-1$ such that $n>2, b \equiv 0,6(\bmod 8)$.

> Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus If N is prime then $S_{n-1} \equiv P_{(b+2) / 2}(6)(\bmod N)$

Conjecture 2.34. Let $N=b^{n}-b-1$ such that $n>2, b \equiv 2,4(\bmod 8)$.

> Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus
> If N is prime then $S_{n-1} \equiv-P_{b / 2}(6)(\bmod N)$

Conjecture 2.35. Let $N=b^{n}+b+1$ such that $n>2, b \equiv 0,6(\bmod 8)$.
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus If N is prime then $S_{n-1} \equiv P_{b / 2}(6)(\bmod N)$

Conjecture 2.36. Let $N=b^{n}+b+1$ such that $n>2, b \equiv 2,4(\bmod 8)$.

> Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus
> If N is prime then $S_{n-1} \equiv-P_{(b+2) / 2}(6)(\bmod N)$

Conjecture 2.37. Let $N=b^{n}-b+1$ such that $n>3, b \equiv 0,2(\bmod 8)$.
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus
If N is prime then $S_{n-1} \equiv P_{b / 2}(6)(\bmod N)$
Conjecture 2.38. Let $N=b^{n}-b+1$ such that $n>3, b \equiv 4,6(\bmod 8)$.

> Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus If N is prime then $S_{n-1} \equiv-P_{(b-2) / 2}(6)(\bmod N)$

Conjecture 2.39. Let $N=b^{n}+b-1$ such that $n>3, b \equiv 0,2(\bmod 8)$.
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus If N is prime then $S_{n-1} \equiv P_{(b-2) / 2}(6)(\bmod N)$

Conjecture 2.40. Let $N=b^{n}+b-1$ such that $n>3, b \equiv 4,6(\bmod 8)$.

$$
\begin{aligned}
& \text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b / 2}(6) \text {, thus } \\
& \text { If } N \text { is prime then } S_{n-1} \equiv-P_{b / 2}(6)(\bmod N)
\end{aligned}
$$

References

[1] Riesel, Hans (1969), "Lucasian Criteria for the Primality of $k \cdot 2^{n}-1$ ", Mathematics of Computation (AmericanMathematical Society), 23 (108): 869-875 .
[2] Crandall, Richard; Pomerance, Carl (2001), "Section 4.2.1: The Lucas-Lehmer test", Prime Numbers: A Computational Perspective (1st ed.), Berlin: Springer, p. 167-170 .
[3] Inkeri, K., "Tests for primality", Ann. Acad. Sci. Fenn., A I 279, 119 (1960).
[4] R. S. Melham , "Probable prime tests for generalized Mersenne numbers,", Bol. Soc. Mat. Mexicana, 14 (2008), 7-14.
[5] Pedro Berrizbeitia ,Florian Luca ,Ray Melham ,"On a Compositeness Test for $\left(2^{p}+1\right) / 3$ ", Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.7 .

