Five conjectures on a diophantine equation involving two primes and a square of prime

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I make five conjectures about the primes q, r and the square of prime $p^{\wedge} 2$, which appears as solutions in the diophantine equation $120 * n * q * r+1=$ $\mathrm{p}^{\wedge} 2$, where n is non-null positive integer.

Conjecture 1:

For any n non-null positive integer there exist q, r primes such that $120 * n * q * r+1=p^{\wedge} 2$, where p is prime or a power of prime.

Conjecture 2:

For any q odd prime there exist n non-null positive integer and r prime such that $120 * n * q * r+1=p \wedge 2$, where p is prime or a power of prime.

Conjecture 3:

For any q, r odd primes there exist n non-null positive integer such that $120 * n * q * r+1=p^{\wedge} 2$, where p is prime or a power of prime.

Conjecture 4:

For any n non-null positive integer and any q prime there exist r prime such that $120 * n^{*} q * r+1=p^{\wedge} 2$, where p is prime or a power of prime.

Examples:

```
: For [n, q] = [1, 5] there exist r = 17 such that p =
    101 prime; also r = 37 such that p = 149 prime;
: For [n, q] = [1, 7] there exist r = 23 such that p =
    139 prime; also r = 53 such that p = 211 prime;
: For [n, q] = [1, 11] there exist r = 13 such that p
    = 131 prime; also r = 83 such that p = 331 prime;
: For [n, q] = [2, 5] there exist r = 19 such that p =
    151 prime;
```

: For $[\mathrm{n}, \mathrm{q}]=[2,7]$ there exist $r=3$ such that $p=$ 71 prime; also $r=17$ such that $p=169$ square of prime;
: For $[n, q]=[2,11]$ there exist $r=3$ such that $p=$ 89 prime;
: For $[\mathrm{n}, \mathrm{q}]=[3,7]$ there exist $\mathrm{r}=13$ such that $\mathrm{p}=$ 181 prime;
: For $[\mathrm{n}, \mathrm{q}]=[3,11]$ there exist $\mathrm{r}=3$ such that $\mathrm{p}=$ 109 prime;
: For $[n, q]=[4,5]$ there exist $r=67$ such that $p=$ 401 prime;
: For $[\mathrm{n}, \mathrm{q}]=[4,7]$ there exist $\mathrm{r}=17$ such that $\mathrm{p}=$ 239 prime;
: For $[\mathrm{n}, \mathrm{q}]=[4,11]$ there exist $r=11$ such that p = 241 prime.

Conjecture 5:

For any n non-null positive integer there exist q prime such that $120 * n^{*} q^{\wedge} 2+1=p^{\wedge} 2$, where p is prime or a power of prime.
Note, for instance, the case from the examples below: $480 * 11^{\wedge} 2+1=241^{\wedge} 2$.

