Five conjectures on a diophantine equation involving two primes and a square of prime

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract. In this paper I make five conjectures about the primes \(r, t \) and the square of prime \(p^2 \), which appears as solutions in the diophantine equation \(120*n*q*r + 1 = p^2 \), where \(n \) is non-null positive integer.

Conjecture 1:

For any \(n \) non-null positive integer there exist \(q, r \) primes such that \(120*n*q*r + 1 = p^2 \), where \(p \) is prime or a power of prime.

Conjecture 2:

For any \(q \) odd prime there exist \(n \) non-null positive integer and \(r \) prime such that \(120*n*q*r + 1 = p^2 \), where \(p \) is prime or a power of prime.

Conjecture 3:

For any \(q, r \) odd primes there exist \(n \) non-null positive integer such that \(120*n*q*r + 1 = p^2 \), where \(p \) is prime or a power of prime.

Conjecture 4:

For any \(n \) non-null positive integer and any \(q \) prime there exist \(r \) prime such that \(120*n*q*r + 1 = p^2 \), where \(p \) is prime or a power of prime.

Examples:

: For \([n, q] = [1, 5]\) there exist \(r = 17 \) such that \(p = 101 \) prime; also \(r = 37 \) such that \(p = 149 \) prime;
: For \([n, q] = [1, 7]\) there exist \(r = 23 \) such that \(p = 139 \) prime; also \(r = 53 \) such that \(p = 211 \) prime;
: For \([n, q] = [1, 11]\) there exist \(r = 13 \) such that \(p = 131 \) prime; also \(r = 83 \) such that \(p = 331 \) prime;
: For \([n, q] = [2, 5]\) there exist \(r = 19 \) such that \(p = 151 \) prime;
For \([n, q] = [2, 7]\) there exist \(r = 3\) such that \(p = 71\) prime; also \(r = 17\) such that \(p = 169\) square of prime;

For \([n, q] = [2, 11]\) there exist \(r = 3\) such that \(p = 89\) prime;

For \([n, q] = [3, 7]\) there exist \(r = 13\) such that \(p = 181\) prime;

For \([n, q] = [3, 11]\) there exist \(r = 3\) such that \(p = 109\) prime;

For \([n, q] = [4, 5]\) there exist \(r = 67\) such that \(p = 401\) prime;

For \([n, q] = [4, 7]\) there exist \(r = 17\) such that \(p = 239\) prime;

For \([n, q] = [4, 11]\) there exist \(r = 11\) such that \(p = 241\) prime.

Conjecture 5:

For any \(n\) non-null positive integer there exist \(q\) prime such that \(120*n*q^2 + 1 = p^2\), where \(p\) is prime or a power of prime.

Note, for instance, the case from the examples below: \(480*11^2 + 1 = 241^2\).