A possible way to write any prime，using just another prime and the powers of the numbers 2,3 and 5

Marius Coman
Bucuresti，Romania
email：mariuscoman13＠gmail．com

Abstract

In this paper I make a conjecture which states that any odd prime can be written in a certain way，in other words that any such prime can be expressed using just another prime and the powers of the numbers 2,3 and 5．I also make a related conjecture about twin primes．

Conjecture：

Any odd prime p can be written at least in one way as $p=$ $\left(q^{*} 2^{\wedge} a * 3^{\wedge} b * 5^{\wedge} c \pm 1\right) * 2^{\wedge} n \pm 1$ ，where q is an odd prime or is equal to 1，where a, b and c are non－negative integers and n is non－null positive integer．

Verifying the conjecture：

（For the first five odd primes）

```
: 3 = (1*2^1*3^0*5^0 - 1)* 先1 + 1, but also 3 =
    (1*2^0*3^1*5^0 - 1)*2^1 - 1;
: 5 = (1*2^1*3^0*5^0 + 1)* 2^1 - 1, but also 5 =
        (1*2^0* 3^1* 5^0 - 1)* 2^1 + 1, also 5 = (1* 2^ 2* 3^0* 5^0
        - 1)*2^1 - 1;
: 7 = (1* 2^0* 3^1* 5^0 + 1)* 2^1 - 1, but also 7 =
        (1*2^1* 3^0* 5^0 + 1)* 2^1 + 1, also 7 = (3* 2^0* 3^0* 5^0
        + 1)*2^1 - 1, also 7 = (5*2^0*3^0*5^0 - 1)*2^1 - 1,
        also 7 = (1*2^2* 3^0* 5^0 - 1)* 2^1 + 1;
: 11 = (1* *^1*3^1*5^0 - 1)* 2^1 + 1, but also 11 =
        (1*2^0*3^0* 5^1 + 1)* *^1 - 1, also 11 =
        (3*2^1*3^0*5^0 - 1)*2^1 + 1, also 11 =
        (5*2^0* 3^0*5^0 + 1)* *^1 - 1, also 11 =
        (7*2^0* 3^0*5^0 - 1)*2^1 - 1, also 11 =
        (1*2^2* 3^0* 5^0 + 1)* *^1 + 1;
```



```
        (1*2^0*3^0* 5^1 + 1)*2^1 + 1, also 13 =
        (3*2^1*3^0* 5^0 + 1)* 2^1 + 1, also 13 =
        (5*2^0* 3^0* 5^0 + 1)* 生1 + 1, also 13 =
        (7*2^0*3^0* 5^0 - 1)* 生^1 + 1.
```


Conjecture:

Any pair of twin primes [p_{1}, p_{2}] can be written as [$p_{1}=$ $\left(q^{*} 2^{\wedge} a * 3^{\wedge} b * 5^{\wedge} c \pm 1\right) * 2^{\wedge} n-1, p_{2}=\left(q^{*} 2^{\wedge} a^{*} 3^{\wedge} b * 5^{\wedge} c \pm 1\right) * 2^{\wedge} n$ $+1]$, where q is prime or is equal to 1 , where a, b and c are non-negative integers and n is non-null positive integer.

Verifying the conjecture:

(For the first three pairs of twin primes)

$$
\begin{aligned}
& : \quad 3=\left(1 * 2^{\wedge} 0 * 3^{\wedge} 1^{*} 5^{\wedge} 0-1\right) * 2^{\wedge} 1-1 \text { and } \\
& 5=\left(1 * 2^{\wedge} 0 * 3^{\wedge} 1^{*} 5^{\wedge} 0-1\right) * 2^{\wedge} 1+1 \text {; } \\
& : \quad 5=\left(1 * 2^{\wedge} 1 * 3^{\wedge} 0 * 5^{\wedge} 0+1\right) * 2^{\wedge} 1-1 \text { and } \\
& 7=\left(1 * 2^{\wedge} 1^{*} 3^{\wedge} 0 * 5^{\wedge} 0+1\right) * 2^{\wedge} 1+1, \text { also } \\
& 5=\left(1 * 2^{\wedge} 2 * 3^{\wedge} 0 * 5^{\wedge} 0-1\right) * 2^{\wedge} 1-1 \text { and } \\
& 7=\left(1 * 2^{\wedge} 2 * 3^{\wedge} 0 * 5^{\wedge} 0-1\right) * 2^{\wedge} 1+1 \text {; } \\
& : \quad 11=\left(1 * 2^{\wedge} 0 * 3^{\wedge} 0 * 5^{\wedge} 1+1\right) * 2^{\wedge} 1-1 \text { and } \\
& 13=\left(1 * 2^{\wedge} 1 * 3^{\wedge} 1^{*} 5^{\wedge} 0+1\right) * 2^{\wedge} 1+1 \text {, also } \\
& 11=\left(5^{*} 2^{\wedge} 0 * 3^{\wedge} 0 * 5^{\wedge} 0+1\right) * 2^{\wedge} 1-1 \text { and } \\
& 13=\left(5 * 2^{\wedge} 0 * 3^{\wedge} 0 * 5^{\wedge} 0+1\right) * 2^{\wedge} 1+1 \text {. }
\end{aligned}
$$

