A possible way to write any prime, using just another prime and the powers of the numbers 2, 3 and 5

Marius Coman Bucuresti, Romania email: mariuscoman13@gmail.com

Abstract. In this paper I make a conjecture which states that any odd prime can be written in a certain way, in other words that any such prime can be expressed using just another prime and the powers of the numbers 2, 3 and 5. I also make a related conjecture about twin primes.

Conjecture:

Any odd prime p can be written at least in one way as $p = (q*2^a*3^b*5^c \pm 1)*2^n \pm 1$, where q is an odd prime or is equal to 1, where a, b and c are non-negative integers and n is non-null positive integer.

Verifying the conjecture:

(For the first five odd primes)

- : $3 = (1 + 2^{1} + 3^{0} + 5^{0} 1) + 2^{1} + 1$, but also $3 = (1 + 2^{0} + 3^{1} + 5^{0} 1) + 2^{1} 1$;
- : $5 = (1*2^{1*3}^{0*5^{0}} + 1)*2^{1} 1$, but also $5 = (1*2^{0*3}^{1*5^{0}} 1)*2^{1} + 1$, also $5 = (1*2^{2*3}^{0*5^{0}} 1)*2^{1} 1$;
- : $7 = (1*2^{0}*3^{1}*5^{0} + 1)*2^{1} 1$, but also $7 = (1*2^{1}*3^{0}*5^{0} + 1)*2^{1} + 1$, also $7 = (3*2^{0}*3^{0}*5^{0} + 1)*2^{1} 1$, also $7 = (5*2^{0}*3^{0}*5^{0} 1)*2^{1} 1$, also $7 = (1*2^{2}*3^{0}*5^{0} 1)*2^{1} 1$;
- $11 = (1 + 2^{1} + 3^{1} + 5^{0} 1) + 2^{1} + 1$, but also 11 =: (1*2^0*3^0*5^1 + 1)*2^1 -1, also 11 = (3*2^1*3^0*5^0 _ 1)*2^1 1, 11 + also = (5*2^0*3^0*5^0 + 1)*2^1 11 — 1, also = (7*2^0*3^0*5^0 -1)*2^1 - 1, 11 also = $(1*2^2*3^0*5^0 + 1)*2^1 + 1;$
- $13 = (1 \times 2^{1} \times 3^{1} \times 5^{0} + 1) \times 2^{1} + 1$, but also 13 =: (1*2^0*3^0*5^1 + 1)*2^1 + 13 1, also = (3*2^1*3^0*5^0 + 1)*2^1 + 1, also 13 = + + (5*2^0*3^0*5^0 1)*2^1 13 1, also = $(7*2^{0}*3^{0}*5^{0} - 1)*2^{1} + 1.$

Conjecture:

Any pair of twin primes $[p_1, p_2]$ can be written as $[p_1 = (q*2^a*3^b*5^c \pm 1)*2^n - 1, p_2 = (q*2^a*3^b*5^c \pm 1)*2^n + 1]$, where q is prime or is equal to 1, where a, b and c are non-negative integers and n is non-null positive integer.

Verifying the conjecture:

(For the first three pairs of twin primes)

:	$3 = (1*2^{0}*3^{1}*5^{0} - 1)*2^{1} - 1 \text{ and} $ $5 = (1*2^{0}*3^{1}*5^{0} - 1)*2^{1} + 1;$
:	$5 = (1*2^{1}*3^{0}*5^{0} + 1)*2^{1} - 1$ and $7 = (1*2^{1}*3^{0}*5^{0} + 1)*2^{1} + 1$, also
	$5 = (1*2^2*3^0*5^0 - 1)*2^1 - 1 \text{ and} 7 = (1*2^2*3^0*5^0 - 1)*2^1 + 1;$
:	$11 = (1*2^{0}*3^{0}*5^{1} + 1)*2^{1} - 1 \text{ and} \\ 13 = (1*2^{1}*3^{1}*5^{0} + 1)*2^{1} + 1, \text{ also}$
	$11 = (5*2^{0}*3^{0}*5^{0} + 1)*2^{1} - 1 \text{ and} \\ 13 = (5*2^{0}*3^{0}*5^{0} + 1)*2^{1} + 1.$