Conjectured Compositeness Tests for Specific Classes of $b^{n}-b-1$ and $b^{n}+b+1$

Predrag Terzić

Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

August 16, 2014

Abstract

Compositeness criteria for specific classes of numbers of the form $b^{n}+b+1$ and $b^{n}-b-1$ are introduced.

Keywords: Compositeness test , Polynomial time , Prime numbers .
AMS Classification: 11A51 .

1 Introduction

In 2008 Ray Melham provided unconditional, probabilistic, lucasian type primality test for generalized Mersenne numbers [1]. In this note I present polynomial time compositeness tests for specific classes of numbers of the form $b^{n}+b+1$ and $b^{n}-b-1$.

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are nonnegative integers .

Conjecture 2.1. Let $N=b^{n}-b-1$ such that $n>2, b \equiv 0,6(\bmod 8)$.
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus
If N is prime then $S_{n-1} \equiv P_{(b+2) / 2}(6)(\bmod N)$
Conjecture 2.2. Let $N=b^{n}-b-1$ such that $n>2, b \equiv 2,4(\bmod 8)$.
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus
If N is prime then $S_{n-1} \equiv-P_{b / 2}(6)(\bmod N)$
Conjecture 2.3. Let $N=b^{n}+b+1$ such that $n>2, b \equiv 0,6(\bmod 8)$.
Let $S_{i}=P_{b}\left(S_{i-1}\right)$ with $S_{0}=P_{b / 2}(6)$, thus
If N is prime then $S_{n-1} \equiv P_{b / 2}(6)(\bmod N)$

Conjecture 2.4. Let $N=b^{n}+b+1$ such that $n>2, b \equiv 2,4(\bmod 8)$.

$$
\begin{aligned}
& \text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b / 2}(6) \text {, thus } \\
& \text { If } N \text { is prime then } S_{n-1} \equiv-P_{(b+2) / 2}(6)(\bmod N)
\end{aligned}
$$

References

[1] R. S. Melham , "Probable prime tests for generalized Mersenne numbers,", Bol. Soc. Mat. Mexicana, 14 (2008), 7-14.

