Conjectured Compositeness Tests for Specific Classes of $b^n - b - 1$ and $b^n + b + 1$

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

August 16, 2014

Abstract: Compositeness criteria for specific classes of numbers of the form $b^n + b + 1$ and $b^n - b - 1$ are introduced.

Keywords: Compositeness test , Polynomial time , Prime numbers . **AMS Classification:** 11A51 .

1 Introduction

In 2008 Ray Melham provided unconditional, probabilistic, lucasian type primality test for generalized Mersenne numbers [1]. In this note I present polynomial time compositeness tests for specific classes of numbers of the form $b^n + b + 1$ and $b^n - b - 1$.

2 The Main Result

Definition 2.1. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers.

Conjecture 2.1. *Let* $N = b^n - b - 1$ *such that* n > 2 *,* $b \equiv 0, 6 \pmod{8}$.

Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus If N is prime then $S_{n-1} \equiv P_{(b+2)/2}(6) \pmod{N}$

Conjecture 2.2. *Let* $N = b^n - b - 1$ *such that* n > 2 *,* $b \equiv 2, 4 \pmod{8}$.

Let
$$S_i = P_b(S_{i-1})$$
 with $S_0 = P_{b/2}(6)$, thus
If N is prime then $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$

Conjecture 2.3. Let $N = b^n + b + 1$ such that n > 2, $b \equiv 0, 6 \pmod{8}$.

Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, thus If N is prime then $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$ **Conjecture 2.4.** Let $N = b^n + b + 1$ such that n > 2, $b \equiv 2, 4 \pmod{8}$.

Let
$$S_i = P_b(S_{i-1})$$
 with $S_0 = P_{b/2}(6)$, thus
If N is prime then $S_{n-1} \equiv -P_{(b+2)/2}(6) \pmod{N}$

References

R. S. Melham, "Probable prime tests for generalized Mersenne numbers,", *Bol. Soc. Mat. Mexicana*, 14 (2008), 7-14.