Conjectured Primality Test for Specific Class of $k \cdot 6^n - 1$

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

August 14, 2014

Abstract: Conjectured polynomial time primality test for specific class of numbers of the form $k \cdot 6^n - 1$ is introduced.

Keywords: Primality test, Polynomial time, Prime numbers.

AMS Classification: 11A51.

1 Introduction

In 1969 Hans Riesel provided polynomial time primality test for numbers of the form $k \cdot 2^n - 1$ with k odd, $k < 2^n$ and n > 2, see Theorem 5 in [1]. In this note I present polynomial time primality test for numbers of the form $k \cdot 6^n - 1$ with $k \equiv 3,9 \pmod{10}$ that is similar to the Riesel test.

2 The Main Result

Definition 2.1. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are nonnegative integers.

Conjecture 2.1. Let $N = k \cdot 6^n - 1$ such that n > 2, k > 0, $k \equiv 3, 9 \pmod{10}$ and $k < 6^n$

Let
$$S_i = P_6(S_{i-1})$$
 with $S_0 = P_{3k}(P_3(3))$, thus
N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

References

[1] Riesel, Hans (1969), "Lucasian Criteria for the Primality of $k \cdot 2^n - 1$ ", *Mathematics of Computation* (AmericanMathematical Society), 23 (108): 869-875.