Conjectured Primality Criterion for Specific Class of Generalized Fermat Numbers

Predrag Terzić
Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

August 12, 2014

Abstract

Conjectured polynomial time primality test for specific class of generalized Fermat numbers is introduced .

Keywords: Primality test , Polynomial time, Prime numbers .
AMS Classification: 11A51 .

1 Introduction

In 1960 Kusta Inkeri provided unconditional, deterministic, lucasian type primality test for Fermat numbers [1] . In this note I present polynomial time primality test for specific class of generalized Fermat numbers .

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are positive integers .

Conjecture 2.1. Let $F_{n}(b)=b^{2^{n}}+1$ such that $n>1, b$ is even, $3 \nmid b$ and $5 \nmid b$.

$$
\begin{aligned}
& \text { Let } S_{i}=P_{b}\left(S_{i-1}\right) \text { with } S_{0}=P_{b / 2}\left(P_{b / 2}(8)\right) \text {, thus } \\
& \quad F_{n}(b) \text { is prime iff } S_{2^{n-2}} \equiv 0\left(\bmod F_{n}(b)\right)
\end{aligned}
$$

References

[1] Inkeri, K., "Tests for primality", Ann. Acad. Sci. Fenn., A I 279, 119 (1960).

