Conjectured Polynomial Time Compositeness Tests

 for Numbers of the Form $k \cdot 2^{n} \pm 1$Predrag Terzić
Podgorica, Montenegro
e-mail: pedja.terzic@hotmail.com

August 11, 2014

Abstract

Conjectured polynomial time compositeness tests for numbers of the form $k \cdot 2^{n}-1$ and $k \cdot 2^{n}+1$ are introduced .

Keywords: Compositeness test , Polynomial time , Prime numbers .
AMS Classification: 11A51 .

1 Introduction

Let p be an odd prime. Define the sequence $\left\{S_{n}\right\}_{n \geq 0}$ by

$$
\begin{gathered}
S_{0}=6, \\
S_{k+1}=S_{k}^{2}-2, k \geq 0
\end{gathered}
$$

The compositeness test for $\left(2^{p}+1\right) / 3$ states :
Theorem 1.1. If N_{p} is prime then $S_{p-1} \equiv-34\left(\bmod N_{p}\right)$
See Theorem 2 in [1].

2 The Main Result

Definition 2.1. Let $P_{m}(x)=2^{-m} \cdot\left(\left(x-\sqrt{x^{2}-4}\right)^{m}+\left(x+\sqrt{x^{2}-4}\right)^{m}\right)$, where m and x are positive integers .

Conjecture 2.1. Let $N=k \cdot 2^{n}-1$ such that $n>2$ and $k>0$.
Let $S_{i}=P_{2}\left(S_{i-1}\right)$ with $S_{0}=P_{k}(6)$, thus
If N is prime then $S_{n-1} \equiv 6(\bmod N)$
Conjecture 2.2. Let $N=k \cdot 2^{n}+1$ such that $n>2$ and $k>0$.
Let $S_{i}=P_{2}\left(S_{i-1}\right)$ with $S_{0}=P_{k}(6)$, thus
If N is prime then $S_{n-1} \equiv 2(\bmod N)$

References

[1] Pedro Berrizbeitia ,Florian Luca ,Ray Melham , "On a Compositeness Test for $\left(2^{p}+1\right) / 3$ ", Journal of Integer Sequences, Vol. 13 (2010), Article 10.1.7 .

