Study of Fermat number

Oh Jung Uk

Abstract

A number of $6 n-1$ type is not odd perfect number, Fermat number is not also odd perfect number.

And, if Fermat number is composite number then Fermat number is factorized as below when n is odd number, $2^{2^{n}}+1=\left(2^{n+1}(3 k+1)+1\right)\left(2^{n+1}(3 m)+1\right)$ when n is even number, $2^{2^{n}}+1=\left(2^{n+1}\left(\frac{3 k+1}{2}\right)+1\right)\left(2^{n+1}(3 m)+1\right)$

And, all Fermat number for $n \geq 5$ is composite number.

1. Introduction

We prove that if $N \equiv-1(\bmod 6)$ then N could not be odd perfect number and Fermat number could not be also odd perfect number by using the characteristics of $N=6 n \pm 1$ type number.
But, we don't prove that an odd perfect number does not exist in call cases except Fermat number. And, when Fermat number is a composite number, we prove that Fermat number could be factorized by two factors of $2^{n+1} K+1$ (From Euler) [3] type and we study to express K more specifically. And, we prove that all Fermat number for $n \geq 5$ is composite number by using mathematical induction.

2. Study of Fermat number

Definition 1. Unless otherwise stated, all of the numbers that are used in the contents of the following is a natural number.
Definition 2. : means therefore.
Definition 3. " \rightarrow, \rightarrow " is an expression to simplify the distinction between the formula when we expand the numberical expression. For example, when we expand $a+1=0$ to obtain $a=-1$, we express $a+1=0 \rightarrow a=-1$.

Theorem 1. Fermat number and ddd perfect number

For an arbitrary natural number N, a number of $N \equiv-1(\bmod 6)$ type could not be odd perfect number.
If Fermat number is $F_{n}=2^{2^{n}}+1$ then $F_{n} \equiv-1(\bmod 6)$ and F_{n} is not odd perfect number.

Proof 1. For an arbitrary natural number N, in the case of $N \equiv-1(\bmod 6)$,
Let us $P_{1}, P_{2}, \ldots, P_{m}$ be all divisor of N.
For an arbitrary $k, T_{k}=\frac{N}{P_{k}}$ is also divisor, so, $\sigma(N)=\sum_{k=1}^{m} P_{k}=\sum_{k=1}^{m} T_{k}$
Therefore, $2 \sigma(N)=\sum_{k=1}^{m} P_{k}+\sum_{k=1}^{m} T_{k}=\sum_{k=1}^{m}\left(P_{k}+T_{k}\right)$
According to "theorem 1 in paper The formula of $\pi(N)$ " [2] of myself, if $N=P T$ then $P \equiv 1, T \equiv-1(\bmod 6)$ or $P \equiv-1, T \equiv 1(\bmod 6)$, so, $P_{k}+T_{k} \equiv 0(\bmod 6)$.
Therefore,

$$
\begin{equation*}
2 \sigma(N)=\sum_{k=1}^{m}\left(P_{k}+T_{k}\right) \equiv 0(\bmod 6) \tag{1.1}
\end{equation*}
$$

Because $\sigma(N)=2 N$ and $N \equiv-1(\bmod 6)$ according to the definition of odd perfect number [1]

$$
\begin{equation*}
2 \sigma(N)=2 \times 2 N \equiv 2 \times-2 \equiv-4(\bmod 6) \tag{1.2}
\end{equation*}
$$

Therefore, if $N \equiv-1(\bmod 6)$ then N is not odd perfect number because (1.1) and (1.2) is different.
Let us define $F_{n}=2^{2^{n}}+1$.
$F_{n}=2^{2^{n}}+1 \equiv-2+1 \equiv-1(\bmod 6)$ because 2^{n} is even number.
Therefore, Fermat number F_{n} is not odd perfect number according to the above result.

Theorem 2. Factor of Fermat composite number

When $F_{n}=2^{2^{n}}+1$ is a composite number and F_{n} is factorized by two factors, if we define $F_{n}=P T$ then $P=2^{n+1} K+1$ (where K is positive integer)(From Euler) [3] and T is also $T=2^{n+1} M+1$. That is,

$$
F_{n}=2^{2^{n}}+1=P T=\left(2^{n+1} K+1\right)\left(2^{n+1} M+1\right)
$$

And each factors P, T is same as following equations.
when n is odd number,

$$
\begin{gathered}
P=2^{n+1} K+1=2^{n+1}(3 k+1)+1 \equiv-1(\bmod 6), k=0,1,2,3, \ldots \\
T=2^{n+1} M+1=2^{n+1}(3 m)+1 \equiv 1(\bmod 6), m=1,2,3, \ldots
\end{gathered}
$$

(But, if k is odd then m is even, if k is even then m is odd)
when n is even number,

$$
\begin{gathered}
P=2^{n+1} K+1=2^{n+1}\left(\frac{3 k+1}{2}\right)+1 \equiv-1(\bmod 6), k=1,3,5, \ldots \\
T=2^{n+1} M+1=2^{n+1}(3 m)+1 \equiv 1(\bmod 6), m=1,2,3, \ldots
\end{gathered}
$$

(But, if $\frac{k-1}{2}$ is odd then m is odd, if $\frac{k-1}{2}$ is even then m is even)

For reference, if we make K, M to the sequence of $\left\{3 k+1, \frac{3 l+1}{2}, 3 m\right\}$ type then

$$
\left\{3 k+1, \frac{3 l+1}{2}, 3 m\right\}=\{\{1,2,3\},\{4,5,6\},\{7,8,9\} \ldots\}
$$

Proof 2.

When $F_{n}=2^{2^{n}}+1$ is a composite number, let us define $F_{n}=P T, P=2^{n+1} K+1$ because $2^{n+1} K+1 \mid F_{n}$ (From Euler) [3]. According to "theorem 1 in paper The formula of $\pi(N)$ " [2] of myself, when $2^{n+1} K+1 \equiv-1(\bmod 6)$, if we define $P=2^{n+1} K+1=6 p-1, T=6 t+1$,

$$
F_{n}=P+6 t P=2^{n+1} K+1+6 t\left(2^{n+1} K+1\right) \rightarrow 2^{2^{n}}=2^{n+1} K(6 t+1)+6 t=2^{n+1} K T+6 t
$$

If we divide by 2 both sides of the above equation,

$$
\begin{equation*}
2^{2^{n}-1}=2^{n} K T+3 t \tag{2.1}
\end{equation*}
$$

Because t should be an even number in (2.1), if we define $t=2 u$ then

$$
2^{2^{n}-1}=2^{n} K T+6 u
$$

If we divide by 2 both sides of the above equation,

$$
\begin{equation*}
2^{2^{n}-2}=2^{n-1} K T+3 u \tag{2.2}
\end{equation*}
$$

Because t should be an even number in (2.2), if we define $u=2 v$ then

$$
2^{2^{n}-2}=2^{n-1} K T+6 v
$$

If we divide by 2 both sides of the above equation,

$$
\begin{equation*}
2^{2^{n}-3}=2^{n-2} K T+3 v- \tag{2.3}
\end{equation*}
$$

Because (2.1), (2.2), (2.3) are same type, the process of the above is repeated.
For a certain integer k and for (2.1), if we repeat the above process then the following equation is satisfied.

$$
\begin{equation*}
2^{2^{n}-1-(n)}=2^{n-(n)} K T+3 k- \tag{2.4}
\end{equation*}
$$

If we organize (2.4) then
$2^{2^{n}-n-1}=2^{0} K \frac{F_{n}}{2^{n+1} K+1}+3 k \rightarrow\left(2^{2^{n}-n-1}-3 k\right)\left(2^{n+1} K+1\right)=K F_{n} \rightarrow$
$K F_{n}=2^{2^{n}} K-3 k 2^{n+1} K+2^{2^{n}-n-1}-3 k \rightarrow K\left(F_{n}-2^{2^{n}}+3 k 2^{n+1}\right)=2^{2^{n}-n-1}-3 k$
$\therefore K=\frac{2^{2^{n}-n-1}-3 k}{F_{n}-2^{2^{n}}+3 k 2^{n+1}}=\frac{2^{2^{n}-n-1}-3 k}{2^{2^{n}}+1-2^{2^{n}}+3 k 2^{n+1}}=\frac{2^{2^{n}-n-1}-3 k}{2^{n+1} 3 k+1}$
And, $F_{n}=P T$, so
$\therefore T=\frac{F_{n}}{2^{n+1} K+1}=\frac{F_{n}}{2^{n+1} \frac{2^{2^{n}-n-1}-3 k}{2^{n+1} 3 k+1}+1}=\frac{F_{n}\left(2^{n+1} 3 k+1\right)}{2^{2^{n}}-3 k 2^{n+1}+2^{n+1} 3 k+1}=2^{n+1} 3 k+1$
Let us define $M=3 k$, because $T=2^{n+1} 3 k+1=2^{n+1} M+1$,so, T is also $2^{n+1} K+1$ type.
Because K is positive integer in $2^{n+1} K+1$ type, so, $3 k>0$. Therefore $k>0$

When $2^{n+1} K+1 \equiv 1(\bmod 6)$, if we define $P=2^{n+1} K+1=6 p+1, T=6 t-1$ then

$$
\begin{gathered}
F_{n}=-P+6 t P=-2^{n+1} K-1+6 t\left(2^{n+1} K+1\right) \rightarrow 2^{2^{n}}+2=2^{n+1} K(6 t-1)+6 t \rightarrow \\
2^{2^{n}}+2=2^{n+1} K T+6 t
\end{gathered}
$$

If we divide by 2 both sides of the above equation,

$$
\begin{equation*}
2^{2^{n}-1}+1=2^{n} K T+3 t- \tag{2.5}
\end{equation*}
$$

Because $2^{n}-1$ is odd,

$$
(2+1)\left(2^{2^{n}-2}-2^{2^{n}-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right)=2^{n} K T+3 t
$$

Because K should be multiple of 3 to satisfy the above equation, if we define $K=3 a$ then

$$
(2+1)\left(2^{2^{n}-2}-2^{2^{n}-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right)=2^{n} 3 a T+3 t
$$

if we divide by 3 both sides of the above equation then

$$
\begin{equation*}
2^{2^{n}-2}-2^{2^{n}-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}=2^{n} a T+t \tag{2.6}
\end{equation*}
$$

Because t should be odd number to satisfy (2.6), if we define $t=2 u+1$ then

$$
\begin{gather*}
2^{2^{n}-2}-2^{2^{n}-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}=2^{n} a T+2 u+1 \rightarrow \\
2^{2^{n}-3}-2^{2^{n}-4}+\cdots+2^{3}-2^{2}+2^{1}-2^{0}=2^{n-1} a T+u---------(2 . \tag{2.7}
\end{gather*}
$$

Because u should be odd number to satisfy (2.7), if we define $u=2 v+1$ then

$$
\begin{gather*}
2^{2^{n}-3}-2^{2^{n}-4}+\cdots+2^{3}-2^{2}+2^{1}-2^{0}=2^{n-1} a T+2 v+1 \rightarrow \\
2^{2^{n}-4}-2^{2^{n}-5}+\cdots+2^{2}-2^{1}=2^{n-2} a T+v-\cdots-------(2.8) \tag{2.8}
\end{gather*}
$$

Because v should be odd number to satisfy (2.8), if we define $v=2 w$ then

$$
\begin{gather*}
2^{2^{n}-4}-2^{2^{n}-5}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}=2^{n-2} a T+2 w \rightarrow \\
2^{2^{n}-5}-2^{2^{n}-6}+\cdots+2^{3}-2^{2}+2^{1}-2^{0}=2^{n-3} a T+w---\cdots--- \tag{2.9}
\end{gather*}
$$

Because $(2.7),(2.9)$ are same type, the process from (2.7) to (2.9) is repeated.

For a certain integer k and for (2.7), when n is odd number, that is, let us define $n=2 m+1$.
If we repeat the process of the above then the following equation is satisfied.

$$
\begin{equation*}
2^{2^{2 m+1}-3-(2 m)}-2^{2^{2 m+1}-4-(2 m)}+\cdots+2^{3}-2^{2}+2^{1}-2^{0}=2^{2 m+1-1-(2 m)} a T+k \tag{2.10}
\end{equation*}
$$

If we organize (2.10) then

$$
2^{2^{2 m+1}-2 m-3}-2^{2^{2 m+1}-2 m-4}+\cdots+2^{3}-2^{2}+2^{1}-2^{0}=2^{0} a T+k
$$

If we multiply by 2 and add 1 to both sides of the above equation to organize the above equation for more simple then

$$
2^{2^{2 m+1}-2 m-2}-2^{2^{2 m+1}-2 m-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}=2^{1} a T+2 k+1
$$

If we multiply by 3 to both sides of the above equation then

$$
(2+1)\left(2^{2^{2 m+1}-2 m-2}-2^{2^{2 m+1}-2 m-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right)=3\left(2^{1} a T+2 k+1\right)
$$

If we organize to reflect $K=3 a, n=2 m+1$ in the above equation then

$$
2^{2^{n}-n}+1=2 K T+6 k+3------(2.11)
$$

If we organize (2.11) then
$2^{2^{n}-n}+1=2 K \frac{F_{n}}{2^{n+1} K+1}+6 k+3 \rightarrow 2^{2^{n}-n}-6 k-2=2 K \frac{F_{n}}{2^{n+1} K+1} \rightarrow$
$2^{2^{n}-n-1}-3 k-1=K \frac{F_{n}}{2^{n+1} K+1} \rightarrow\left(2^{n+1} K+1\right)\left(2^{2^{n}-n-1}-3 k-1\right)=K F_{n} \rightarrow$
$\therefore K=\frac{2^{2^{n}-n-1}-3 k-1}{F_{n}-2^{2^{n}}+3 k 2^{n+1}+2^{n+1}}=\frac{2^{2^{n}-n-1}-3 k-1}{3 k 2^{n+1}+2^{n+1}+1}=\frac{2^{2^{n}-n-1}-(3 k+1)}{2^{n+1}(3 k+1)+1}$

And, $F_{n}=P T$,so,

$$
\begin{aligned}
\therefore T & =\frac{F_{n}}{2^{n+1} K+1}=\frac{F_{n}}{2^{n+1} \frac{2^{2^{n}-n-1}-(3 k+1)}{2^{n+1}(3 k+1)+1}+1}=\frac{F_{n}\left\{2^{n+1}(3 k+1)+1\right\}}{2^{2^{n}}-(3 k+1) 2^{n+1}+2^{n+1}(3 k+1)+1} \\
& =2^{n+1}(3 k+1)+1
\end{aligned}
$$

Let us define $M=3 k+1$, because $T=2^{n+1}(3 k+1)+1=2^{n+1} M+1$,so, T is also $2^{n+1} K+1$ type.

Because K is positive integer in $2^{n+1} K+1$ type, so, $3 k+1>0 \rightarrow k>-\frac{1}{3}$. Therefore $k \geq 0$

When $2^{n+1} K+1 \equiv 1(\bmod 6)$, n is even number, that is, let us define $n=2 m$.
For a certain integer k and for (2.7), if we repeat the process of the above then the following equation is satisfied.

$$
\begin{equation*}
2^{2^{2 m}-3-(2 m-2)}-2^{2^{2 m}-4-(2 m-2)}+\cdots+2^{3}-2^{2}+2^{1}-2^{0}=2^{2 m-1-(2 m-2)} a T+k \tag{2.12}
\end{equation*}
$$

If we organize (2.12) then

$$
2^{2^{2 m}-2 m-1}-2^{2^{2 m}-2 m-2}+\cdots+2^{3}-2^{2}+2^{1}-2^{0}=2^{1} a T+k
$$

If we multiply by 2 and add 1 to both sides of the above equation to organize the above equation for more simple then

$$
2^{2^{2 m}-2 m}-2^{2^{2 m}-2 m-1}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}=2^{2} a T+2 k+1
$$

If we multiply by 3 to both sides of the above equation then

$$
(2+1)\left(2^{2^{2 m}-2 m}-2^{2^{2 m}-2 m-1}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right)=3\left(2^{2} a T+2 k+1\right)
$$

If we organize to reflect $K=3 a, n=2 m$ in the above equation then

$$
2^{2^{n}-n+1}+1=2^{2} K T+6 k+3-\cdots---(2.13)
$$

If we organize (2.13) then

$$
\begin{aligned}
& 2^{2^{n}-n+1}+1=2^{2} K \frac{F_{n}}{2^{n+1} K+1}+6 k+3 \rightarrow 2^{2^{n}-n+1}-6 k-2=2^{2} K \frac{F_{n}}{2^{n+1} K+1} \rightarrow \\
& 2^{2^{n}-n}-3 k-1=2^{1} K \frac{F_{n}}{2^{n+1} K+1} \rightarrow\left(2^{n+1} K+1\right)\left(2^{2^{n}-n}-3 k-1\right)=2 K F_{n} \rightarrow \\
& K 2^{2^{n}+1}-2^{n+1} K 3 k-2^{n+1} K+2^{2^{n}-n}-3 k-1=2 K F_{n} \rightarrow \\
& 2^{2^{n}-n}-3 k-1=K\left(2 F_{n}-2^{2^{n}+1}+2^{n+1} 3 k+2^{n+1}\right) \\
& \therefore K=\frac{2^{2^{n}-n}-3 k-1}{2 F_{n}-2^{2^{n}+1}+2^{n+1} 3 k+2^{n+1}}=\frac{2^{2^{n}-n}-3 k-1}{2^{n+1} 3 k+2^{n+1}+2}=\frac{1}{2} \frac{2^{2^{n}-n}-(3 k+1)}{2^{n}(3 k+1)+1}
\end{aligned}
$$

And, $F_{n}=P T$,so,

$$
\begin{aligned}
\therefore T & =\frac{F_{n}}{2^{n+1} K+1}=\frac{F_{n}}{2^{n+1} \frac{1}{2} \frac{2^{2^{n}-n}-(3 k+1)}{2^{n}(3 k+1)+1}+1}=\frac{F_{n}\left\{2^{n}(3 k+1)+1\right\}}{2^{2^{n}}-(3 k+1) 2^{n}+2^{n}(3 k+1)+1} \\
& =2^{n}(3 k+1)+1=2^{n+1}\left(\frac{3 k+1}{2}\right)+1
\end{aligned}
$$

Let us define $M=\left(\frac{3 k+1}{2}\right)$, because $T=2^{n+1}\left(\frac{3 k+1}{2}\right)+1=2^{n+1} M+1$, so,
T is also $2^{n+1} K+1$ type.
Because K is positive integer in $2^{n+1} K+1$ type, so, $\left(\frac{3 k+1}{2}\right)>0 \rightarrow k>-\frac{1}{3}$. Therefore $k \geq 0$

By summarizing the above contents, let us define $F_{n}=P T, P=2^{n+1} K+1, T=2^{n+1} M+1$
because T is also $2^{n+1} K+1$ type in the contents of the above.
When n is odd number, if we define $P=2^{n+1} K+1=2^{n+1}(3 k+1)+1$ then
$P=2^{n+1}(3 k+1)+1 \equiv-2(3 k+1)+1 \equiv-6 k-2+1 \equiv-1(\bmod 6)$.
$F_{n}=P T=P\left(2^{n+1} M+1\right) \equiv-1(-2 M+1) \equiv 2 M-1(\bmod 6)$ and
$F_{n} \equiv-1 \equiv 2 M-1(\bmod 6) \rightarrow 2 M \equiv 0(\bmod 6)$, because $F_{n} \equiv-1(\bmod 6)$ according to theorem 1
Therefore, because M is multiple of 3 , if we define $T=2^{n+1}(3 m)+1$ then
$T=2^{n+1}(3 m)+1 \equiv-2(3 m)+1 \equiv 1(\bmod 6)$.
And, because it should be $3 m>0$, so, $m>0$
When n is even number, if we define $P=2^{n+1} K+1=2^{n+1}\left(\frac{3 k+1}{2}\right)+1$ then
$P=2^{n}(3 k+1)+1 \equiv-2(3 k+1)+1 \equiv-6 k-2+1 \equiv-1(\bmod 6)$.
And, $k \geq 0$, but it should be $2 \mid 3 k+1$,so, $k=1,3,5, \ldots$.
$F_{n}=P T=P\left(2^{n+1} M+1\right) \equiv-1(-2 M+1) \equiv 2 M-1(\bmod 6)$ and
$F_{n} \equiv-1 \equiv 2 M-1(\bmod 6) \rightarrow 2 M \equiv 0(\bmod 6)$.
Therefore, because M is multiple of 3 , if we define $T=2^{n+1}(3 m)+1$ then
$T=2^{n+1}(3 m)+1 \equiv-2(3 m)+1 \equiv 1(\bmod 6)$.
And, because it should be $3 m>0$, so, $m>0$

In addition, $F_{n}=2^{2^{n}}+1=P T=\left(2^{n+1} K+1\right)\left(2^{n+1} M+1\right)=2^{n+1}\left(2^{n+1} K M+K+M\right)+1$
So, $2^{2^{n}}=2^{n+1}\left(2^{n+1} K M+K+M\right) \rightarrow 2^{2^{n}-n-1}=2^{n+1} K M+K+M$
Therefore, $K+M$ should be even number.
When n is odd number, $K+M=3 k+1+3 m$,so, if k is odd number then m should be even number, if k is even number then m should be odd number.

When n is even number, because k should be odd number, if we define $k=2 a+1$ then
$K+M=\frac{3 k+1}{2}+3 m=\frac{3(2 a+1)+1}{2}+3 m=\frac{6 a+4}{2}+3 m=3 a+2+3 m$.
Because $a=\frac{k-1}{2}$, so, if $\frac{k-1}{2}$ is odd number then m is odd number,
if $\frac{k-1}{2}$ is even number then m is even number

By summarizing all of the above contents, if F_{n} is factorized by $F_{n}=P T$ when n is odd number,

$$
\begin{gathered}
P=2^{n+1} K+1=2^{n+1}(3 k+1)+1 \equiv-1(\bmod 6), k=0,1,2,3, \ldots \\
T=2^{n+1} M+1=2^{n+1}(3 m)+1 \equiv 1(\bmod 6), m=1,2,3, \ldots
\end{gathered}
$$

(But, if k is odd then m is even, if k is even then m is odd)
when n is even number,

$$
\begin{gathered}
P=2^{n+1} K+1=2^{n+1}\left(\frac{3 k+1}{2}\right)+1 \equiv-1(\bmod 6), k=1,3,5, \ldots \\
T=2^{n+1} M+1=2^{n+1}(3 m)+1 \equiv 1(\bmod 6), m=1,2,3, \ldots
\end{gathered}
$$

(But, if $\frac{k-1}{2}$ is odd then m is odd, if $\frac{k-1}{2}$ is even then m is even)

For reference, if we make K, M to the sequence of $\left\{3 k+1, \frac{3 l+1}{2}, 3 m\right\}$ type then $\left\{3 k+1, \frac{3 l+1}{2}, 3 m\right\}=\{\{1,2,3\},\{4,5,6\},\{7,8,9\} \ldots\}$ because $k=0,1,2,3, \ldots, p=1,3,5, \ldots, m=1,2,3, \ldots$

Theorem 3. Fermat composite number and $6 \boldsymbol{n} \pm 1$

If we define Fermat number as $F_{n}=2^{2^{n}}+1$ and $F_{n}=6 f_{n}-1$.

$$
f_{n}=2^{2^{n}-2}-2^{2^{n}-3}+2^{2^{n}-4}-2^{2^{n}-5}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}
$$

And, if $F_{n}=P T$, that is, F_{n} is a composite number then the following equation is satisfied.
When n is odd number,

$$
\begin{aligned}
& \text { if } P=2^{n+1}(3 k+1)+1=6 p-1, T=2^{n+1}(3 m)+1=6 t+1 \text { then } \\
& \quad p=2^{n} k+\left(2^{n-1}-2^{n-2}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right), t=2^{n} m
\end{aligned}
$$

When n is even number,
if $P=2^{n+1}\left(\frac{3 k+1}{2}\right)+1=6 p-1, T=2^{n+1}(3 m)+1=6 t+1$ then

$$
p=2^{n-1} k+\left(2^{n-2}-2^{n-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right), t=2^{n} m
$$

Proof 3. Let us define $F_{n}=2^{2^{n}}+1=6 f_{n}-1$ because $F_{n} \equiv-1(\bmod 6)$ according to theorem 1 . $2^{2^{n}}+1=6 f_{n}-1 \rightarrow 2^{2^{n}}+2=6 f_{n} \rightarrow 2^{2^{n}-1}+1=3 f_{n}$
Because $2^{n}-1$ is an odd number
$2^{2^{n}-1}+1=(2+1)\left(2^{2^{n}-2}-2^{2^{n}-3}+2^{2^{n}-4}-2^{2^{n}-5}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right)=3 f_{n} \rightarrow$ $2^{2^{n}-2}-2^{2^{n}-3}+2^{2^{n}-4}-2^{2^{n}-5}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}=f_{n}$
And, Let us define $F_{n}=P T, F_{n}$ be a composite number.
When n is odd number, because $P=2^{n+1}(3 k+1)+1 \equiv-1(\bmod 6)$ according to theorem 2 , if we define $P=6 p-1=2^{n+1}(3 k+1)+1$ then

$$
\begin{gathered}
6 p-1=2^{n+1}(3 k+1)+1 \rightarrow 3 p=2^{n}(3 k+1)+1 \rightarrow 3 p=2^{n} 3 k+2^{n}+1 \rightarrow \\
3 p=2^{n} 3 k+(2+1)\left(2^{n-1}-2^{n-2}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right) \rightarrow \\
p=2^{n} k+\left(2^{n-1}-2^{n-2}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right)
\end{gathered}
$$

And, because $T=2^{n+1}(3 m)+1 \equiv 1(\bmod 6)$ according to theorem 2 ,
if we define $T=6 t+1=2^{n+1}(3 m)+1$ then

$$
6 t+1=2^{n+1}(3 m)+1 \rightarrow 2 t=2^{n+1}(m) \rightarrow t=2^{n} m
$$

When n is even number, according to theorem 2 because $P=2^{n+1}\left(\frac{3 k+1}{2}\right)+1 \equiv-1(\bmod 6)$, so,
if we define $P=6 p-1=2^{n+1}\left(\frac{3 k+1}{2}\right)+1$ then

$$
\begin{gathered}
6 p-1=2^{n+1}\left(\frac{3 k+1}{2}\right)+1 \rightarrow 3 p=2^{n}\left(\frac{3 k+1}{2}\right)+1 \rightarrow 3 p=2^{n-1} 3 k+2^{n-1}+1 \rightarrow \\
3 p=2^{n-1} 3 k+(2+1)\left(2^{n-2}-2^{n-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right) \rightarrow \\
p=2^{n-1} k+\left(2^{n-2}-2^{n-3}+\cdots+2^{4}-2^{3}+2^{2}-2^{1}+2^{0}\right)
\end{gathered}
$$

And, because $T=2^{n+1}(3 m)+1 \equiv 1(\bmod 6)$ according to theorem 2
if we define $T=6 t+1=2^{n+1}(3 m)+1$ then

$$
6 t+1=2^{n+1}(3 m)+1 \rightarrow 2 t=2^{n+1}(m) \rightarrow t=2^{n} m
$$

Theorem 4. Fermat composite number and next Fermat composite number

If we define a Fermat number as $F_{n}=2^{2^{n}}+1$,
if we define the next Fermat number as $F_{n+1}=2^{2^{n+1}}+1$ then

$$
F_{n+1}=F_{n}+2^{2^{n}}\left(2^{2^{n}}-1\right)={F_{n}}^{2}-2^{2^{n}+1}={F_{n}}^{2}-2 F_{n}+2=F_{n}\left(F_{n}-2\right)+2
$$

And, when F_{n}, F_{n+1} is all composite number,
If $F_{n}=\left(2^{n+1} K+1\right)\left(2^{n+1} M+1\right), F_{n+1}=\left(2^{n+2} U+1\right)\left(2^{n+2} V+1\right)$ then

$$
2^{2^{n+1}-n-2}=2^{n+2} U V+U+V=2^{n}\left(2^{n+1} K M+K+M\right)^{2}
$$

Proof 4.

Let us define a Fermat number as $F_{n}=2^{2^{n}}+1$ and
let us define the next Fermat number as $F_{n+1}=2^{2^{n+1}}+1$. And then

$$
\begin{gathered}
F_{n+1}-F_{n}=2^{2^{n+1}}+1-\left(2^{2^{n}}+1\right)=2^{2^{n+1}}-2^{2^{n}}=2^{2^{n}}\left(2^{2^{n}}-1\right) \rightarrow \\
F_{n+1}=F_{n}+2^{2^{n}}\left(2^{2^{n}}-1\right)
\end{gathered}
$$

Because $2^{2^{n}}-1=2^{2^{n}}+1-2=F_{n}-2$, so

$$
\begin{gathered}
F_{n+1}=F_{n}+2^{2^{n}}\left(2^{2^{n}}-1\right)=F_{n}+2^{2^{n}}\left(F_{n}-2\right)=F_{n}+2^{2^{n}} F_{n}-2^{2^{n}+1} \rightarrow \\
F_{n+1}=F_{n}\left(1+2^{2^{n}}\right)-2^{2^{n}+1}=F_{n} F_{n}-2^{2^{n}+1}=F_{n}{ }^{2}-2^{2^{n}+1}
\end{gathered}
$$

Because $2^{2^{n}}=2^{2^{n}}+1-1=F_{n}-1$, so

$$
F_{n+1}={F_{n}}^{2}-2^{2^{n}+1}={F_{n}}^{2}-2\left(F_{n}-1\right)={F_{n}}^{2}-2 F_{n}+2=F_{n}\left(F_{n}-2\right)+2
$$

And, when F_{n}, F_{n+1} is all composite number, according to theorem 2
If we define $F_{n}=\left(2^{n+1} K+1\right)\left(2^{n+1} M+1\right), F_{n+1}=\left(2^{n+2} U+1\right)\left(2^{n+2} V+1\right)$ then

$$
\begin{aligned}
& F_{n}=\left(2^{n+1} K+1\right)\left(2^{n+1} M+1\right)=2^{n+1}\left(2^{n+1} K M+K+M\right)+1 \\
& F_{n+1}=\left(2^{n+2} U+1\right)\left(2^{n+2} V+1\right)=2^{n+2}\left(2^{n+2} U V+U+V\right)+1
\end{aligned}
$$

If we define $Q=2^{n+1} K M+K+M, W=2^{n+2} U V+U+V$ then
$F_{n}=2^{n+1} Q+1, F_{n+1}=2^{n+2} W+1$ 이고 $F_{n+1}=F_{n}\left(F_{n}-2\right)+2$, so,
$2^{n+2} W+1=\left(2^{n+1} Q+1\right)\left(2^{n+1} Q+1-2\right)+2 \rightarrow 2^{n+2} W+1=\left(2^{n+1} Q+1\right)\left(2^{n+1} Q-1\right)+2 \rightarrow$
$2^{n+2} W+1=\left(2^{2 n+2} Q^{2}-1\right)+2 \rightarrow 2^{n+2} W+1=2^{2 n+2} Q^{2}+1 \rightarrow 2^{n+2} W=2^{2 n+2} Q^{2} \rightarrow$

$$
W=2^{n} Q^{2}
$$

And, $F_{n+1}=2^{n+2} 2^{n} Q^{2}+1 \rightarrow 2^{2^{n+1}}+1-1=2^{n+2} 2^{n} Q^{2} \rightarrow 2^{2^{n+1}-n-2}=2^{n} Q^{2}$
Therefore,

$$
2^{2^{n+1}-n-2}=2^{n+2} U V+U+V=2^{n}\left(2^{n+1} K M+K+M\right)^{2}
$$

Theorem 5. All $(n \geq 5)$ Fermat number is composite

All Fermat number for $n \geq 5$ is composite number.

Proof 5.

Let us define Fermat number as $F_{n}=2^{2^{n}}+1$ and $F_{n+1}=2^{2^{n+1}}+1$.
For $n<5, F_{n}$ is already proved to be prime number and

$$
\text { for } n \geq 5, F_{5}=641 \times 6700417=\left(2^{5+1}(3 \times 3+1)+1\right)\left(2^{5+1}(3 \times 34898)+1\right)
$$

$$
F_{6}=274177 \times 67280421310721=\left(2^{n+1}(3 \times 714)+1\right)\left(2^{6+1}\left(\frac{3 \times 350418860993+1}{2}\right)+1\right)
$$

is already proved to be composite number. So, we finish to prove the first of the mathematical induction. [3]

Let us suppose that F_{n} is composite number. That is, according to theorem 2

$$
F_{n}=\left(2^{n+1} K+1\right)\left(2^{n+1} M+1\right)=2^{n+1}\left(2^{n+1} K M+K+M\right)+1
$$

Let us define $Q=2^{n+1} K M+K+M$, if we arrange the above equation then

$$
\begin{equation*}
F_{n}=2^{n+1}\left(2^{n+1} K M+K+M\right)+1=2^{n+1} Q+1 \tag{5.1}
\end{equation*}
$$

Now, Let us suppose that F_{n+1} is not composite number to show that F_{n+1} is also composite number. To prove this, let us define $2^{n+2} U V+U+V=2^{n} Q^{2}$ for a certain natural number U and let us suppose that any certain natural number $V(V>0)$ is not exist to satisfy this equation. Because V is not natural number, let us define $a \neq 0, a, b$ is relative prime, $V=b / a>0$ is an irreducible fraction. And, let us be $2^{n} Q^{2}-U>0 \rightarrow 2^{n} Q^{2}>U$ for $V>0$ because $V\left(2^{n+2} U+1\right)=2^{n} Q^{2}-$ U in the above equation
By summarizing the above contents and applying theorem 4, let us suppose below equation.

$$
\begin{array}{r}
2^{n+2} U V+U+V=2^{n+2} U \frac{b}{a}+U+\frac{b}{a}=2^{n} Q^{2}=2^{2^{n+1}-n-2} \\
\left(\text { but }, U<2^{n} Q^{2}=2^{2^{n+1}-n-2}, V=\frac{b}{a}>0, a \neq 0, a, b \text { is relative prime }\right) \tag{5.2}
\end{array}
$$

If we multiply 2^{n+2} and add 1 to the both sides of (5.2) and arrange then

$$
\begin{gather*}
2^{n+2} U V+U+V=2^{2^{n+1}-n-2} \rightarrow 2^{n+2}\left(2^{n+2} U V+U+V\right)+1=2^{n+2} 2^{2^{n+1}-n-2}+1 \rightarrow \\
2^{n+2} 2^{n+2} U V+2^{n+2} U+2^{n+2} V+1=2^{2^{n+1}}+1 \rightarrow \\
2^{n+2} U\left(2^{n+2} V+1\right)+\left(2^{n+2} V+1\right)=2^{2^{n+1}}+1 \rightarrow \\
\left(2^{n+2} U+1\right)\left(2^{n+2} V+1\right)=2^{2^{n+1}}+1=F_{n+1} \cdots-\cdots-\cdots-\cdots(5.3) \tag{5.3}
\end{gather*}
$$

The above equation satisfies the assumption that F_{n+1} is not composite number, because V is not natural number but the left side of (5.3) is multiplication of two numbers. Therefore, (5.2) is appropriate to satisfy the assumption. And $V>0$ is appropriate condition because if $V=0$ then $\left(2^{n+2} U+1\right)\left(2^{n+2} V+1\right)=\left(2^{n+2} U+1\right)\left(2^{n+2} \times 0+1\right)=2^{n+2} U+1$ in (5.3), so the assumption of that F_{n+1} is not composite number become meaninglessness.

If we multiply a to the both sides of (5.2) and arrange then

$$
\begin{equation*}
2^{n+2} U b+a U+b=a 2^{2^{n+1}-n-2} \rightarrow b\left(2^{n+2} U+1\right)=a\left(2^{2^{n+1}-n-2}-U\right) \tag{5.4}
\end{equation*}
$$

Let us define $2^{2^{n+1}-n-2}-U=b k$ for adequate natural number k because it should be $\operatorname{Gcd}\left(b,\left(2^{2^{n+1}-n-2}-U\right)\right) \neq 1$ why a, b is relative prime and because $2^{2^{n+1}-n-2}-U>0$ in the condition of (5.2). That is $2^{2^{n+1}-n-2}=U+b k$. If we apply this to (5.2) then

$$
\begin{aligned}
2^{n+2} U \frac{b}{a}+U+\frac{b}{a}=U+b k & \rightarrow 2^{n+2} U \frac{b}{a}+\frac{b}{a}=b k \rightarrow \text { because } b \neq 0 \rightarrow 2^{n+2} U \frac{1}{a}+\frac{1}{a}=k \rightarrow \\
& 2^{n+2} U+1=a k
\end{aligned}
$$

If we apply (5.5) to (5.3) then

$$
\begin{equation*}
F_{n+1}=(a k)\left(2^{n+2} V+1\right) \rightarrow F_{n+1}=a k\left(2^{n+2} \frac{b}{a}+1\right) \rightarrow F_{n+1}=k\left(2^{n+2} b+a\right) \tag{5.6}
\end{equation*}
$$

The assumption is inconsistency because F_{n+1} is composite number as multiplication of k and $\left(2^{n+2} b+1\right)$ in (5.6). So, the first assumption is wrong that F_{n+1} is not composite number.
So, F_{n+1} is composite number.
In the opposite, $2^{n+2} U V+U+V=2^{n} Q^{2}=2^{2^{n+1}-n-2}$ of (5.2) for natural number V is concluded according to theorem 4 because F_{n}, F_{n+1} is composite number.

Therefore, all Fermat number for $n \geq 5$ is composite number according to mathematical induction.

References

[1] Kim Ung Tae, Park Sung Ahn, Number Theory $7^{\text {th }}$, KyungMoon(2007), pp56~59.
(This is Korean book. I translate, sorry . Original book is 김응태, 박승안 공저. 정수론 제 7 판. 경문사(2007))
[2] Oh Jung Uk, "The formula of $\pi(N)$ ", http://vixra.org/pdf/1408.0041v1.pdf
[3] wikipedia, Fermat number,
http://en.wikipedia.org/wiki/Fermat_number

Oh Jung Uk, South Korea (I am not in any institutions of mathematics)
E-mail address: ojumath @ gmail.com

