The formula of $\boldsymbol{\pi}(N)$

Oh Jung Uk

Abstract

The formula of prime-counting function $\pi(N=6 n+3)$ is described below. $$
\begin{gathered} \pi(N=6 n+3)=2 n+2-\frac{2}{3} \sum_{k=1}^{n}\left\{\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}+\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right\} \\ -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left\{\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)+\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right\} \\ \text { where, } \beta(6 k-1)=\tau(6 k-1)-2, \beta(6 k+1)=\tau(6 k+1)-2, \ldots \end{gathered}
$$

1. Introduction

We study $6 n \pm 1$ type number because all of the prime number is $6 n \pm 1$ type with the exception of 2,3 and $4 n \pm 1$ type has the multiple of 3 . We know that the numerical expression of $\tau(N), \sigma(N)$ is not exist when the prime factorization of N is unknown, but if the prime factorization of N is known then the numerical expression of $\tau(N), \sigma(N)$ is exist. For solving this problem, we obtain $\tau(6 n \pm 1), \sigma(6 n \pm 1)$ by using the characteristics of $6 n \pm 1$ type when we don't know the prime factorization of N. And, we define $\rho(N)$ if N is a prime number then 0 else 1 , and we study $\pi(N)$ by using $\rho(N)$. And by using the contents of the above, we study the numerical expression about that the prime number $6 x \pm 1$ appears for the first time after the prime number $6 p \pm 1$.

2. The formula of $\pi(N)$

Definition 1. Unless otherwise stated, all of the numbers that are used in the contents of the following is a natural number.
Definition 2. [] is Gauss expression, that is, floor function. For example, [1.3] = 1
Definition 3. $\overline{\mathbb{R}}$ is set of real number except integer.
Definition 4. For arbitrary d
$\beta(N)=\left\{\begin{array}{c}0, \text { if } N \text { is a prime number } \\ d, \text { if } N \text { is } 1 \text { or a composite number }\end{array}\right\}, \rho(N)=\left\{\begin{array}{c}0, \text { if } N \text { is a prime number } \\ 1, \text { if } N \text { is } 1 \text { or a composite number }\end{array}\right\}$
Definition 5. " \rightarrow, \rightarrow " is an expression to simplify the distinction between the formula when we expand the numberical expression. For example, when we expand $a+1=0$ to obtain $a=-1$, we express $a+1=0 \rightarrow a=-1$.

Theorem 1. Characteristics of $N=6 n \pm 1$ type composite number

For a composite number of $N=6 n \pm 1$ type
If $P|N, T| N, N=6 n \pm 1=P T(1<P<N, 1<T<N)$ then $P \equiv \pm 1(\bmod 6), T \equiv \pm 1(\bmod 6)$
When $N=6 n+1$, if $P=6 p+1, T=6 t+1$ then $N=P+6 t P, n=p+t P$
if $P=6 p-1, T=6 t-1$ then $N=-P+6 t P, n=-p+t P$
When $N=6 n-1$, if $P=6 p+1, T=6 t-1$ then $N=-P+6 t P, n=-p+t P$
if $P=6 p-1, T=6 t+1$ then $N=P+6 t P, n=p+t P$
Further, the above formula always holds no matter if P is a prime number or a composite number.

Proof 1. Because N is a composite number, let us define $N=P T$ and $P=6 p+r, T=6 t+s$ $N=P T=(6 p+r)(6 t+s)=6(6 p t+p s+t r)+r s$ and $N \equiv \pm 1(\bmod 6)$, so,
$N \equiv 6(6 p t+p s+t r)+r s \equiv r s \equiv \pm 1(\bmod 6)$. Because r, s is the one of $0, \pm 1, \pm 2, \pm 3$,
$r \equiv \pm 1(\bmod 6), s \equiv \pm 1(\bmod 6)$. That is, $P \equiv \pm 1(\bmod 6), T \equiv \pm 1(\bmod 6)$

In the case of $N=6 n+1$, because $P \equiv 1(\bmod 6), T \equiv 1(\bmod 6)$ or $P \equiv-1(\bmod 6), T \equiv$ $-1(\bmod 6)$, let us define $P \equiv 1(\bmod 6), T \equiv 1(\bmod 6)$, that is, $P=6 p+1, T=6 t+1$ $N=6 n+1=P T=(6 p+1)(6 t+1)=36 p t+6 p+6 t+1=6 p+1+6 t(6 p+1)$ $=P+6 t P=6(6 p t+p+t)+1=6(p+t(6 p+1))+1=6(p+t P)+1$
Therefore, $N=6 n+1=P+6 t P, n=p+t P$
Let us define $P \equiv-1(\bmod 6), T \equiv-1(\bmod 6)$, that is, $P=6 p-1, T=6 t-1$

$$
\begin{aligned}
N & =6 n+1=P T=(6 p-1)(6 t-1)=36 p t-6 p-6 t+1=-(6 p-1)+6 t(6 p-1) \\
& =-P+6 t P=6(6 p t-p-t)+1=6(-p+t(6 p-1))+1=6(-p+t P)+1
\end{aligned}
$$

Therefore, $N=6 n+1=-P+6 t P, n=-p+t P$

In the case of $N=6 n-1$, because $P \equiv 1(\bmod 6), T \equiv-1(\bmod 6)$ or $P \equiv-1(\bmod 6), T \equiv$ $1(\bmod 6)$, let us define $P \equiv 1(\bmod 6), T \equiv-1(\bmod 6)$, that is, $P=6 p+1, T=6 t-1$

$$
N=6 n-1=P T=(6 p+1)(6 t-1)=36 p t-6 p+6 t-1=-(6 p+1)+6 t(6 p+1)
$$

$$
=-P+6 t P=6(6 p t-p+t)-1=6(-p+t(6 p+1))-1=6(-p+t P)-1
$$

Therefore, $N=6 n-1=-P+6 t P, n=-p+t P$
Let us define $P \equiv-1(\bmod 6), T \equiv 1(\bmod 6)$, that is, $P=6 p-1, T=6 t+1$

$$
\begin{aligned}
N & =6 n-1=P T=(6 p-1)(6 t+1)=36 p t+6 p-6 t-1=6 p-1+6 t(6 p-1) \\
& =P+6 t P=6(6 p t+p-t)-1=6(p+t(6 p-1))-1=6(p+t P)-1
\end{aligned}
$$

Therefore, $N=6 n-1=P+6 t P, n=p+t P$

Further, because $P \mid N, P$ is self-evidently a prime number or a composite number according to unique factorization theorem. Therefore, the above formula always holds no matter if P is a prime number or a composite number.

Theorem 2. $\beta(N=6 n \pm 1), \tau(N=6 n \pm 1), \sigma(N=6 n \pm 1)$

	$\mathrm{N}=6 \mathrm{n}+1=\mathrm{PT}=(6 \mathrm{p}+1)(6 t+1)$ type				$\mathrm{N}=6 \mathrm{n}+1=\mathrm{PT}=(6 \mathrm{p}-1)(6 \mathrm{t}-1)$ type			
	1(P=7)	2(P=13)	3(P=19)	...	1(P=5)	2(P=11)	3(P=17)	...
1(N=7)								
2($\mathrm{N}=13$)								
3(N=19)								
4($\mathrm{N}=25$)					$\mathrm{N}=25(\mathrm{t}=1)$			
...								
8(N=49)	$\mathrm{N}=49(\mathrm{t}=1)$							
9(N=55)					$\mathrm{N}=55(\mathrm{t}=2)$	$\mathrm{N}=55(\mathrm{t}=1)$		
$10(\mathrm{~N}=61$)								
\cdots								
14($\mathrm{N}=85$)					$\mathrm{N}=85(\mathrm{t}=3)$		$\mathrm{N}=85(\mathrm{t}=1)$	
15(N=91)	$\mathrm{N}=91(\mathrm{t}=2)$	$\mathrm{N}=91(\mathrm{t}=1)$						
...								

(Table 2.1. $N=6 n+1$ type)

We indicate $N=6 n+1$ of $N=6 n+1$ type number on the record, P of $N=P T$ on the column in Table 2.1. Because $N=P T=(6 p+1)(6 t+1)$ or $N=P T=(6 p-1)(6 t-1)$ in the case of $N=6 n+1$ according to theorem 1 , we indicate $N=P T=(6 p+1)(6 t+1)$ on the left side of column, and we indicate $N=P T=(6 p-1)(6 t-1)$ on the right side of column.
As in the example of $p=1(P=7)$, if we indicate the multiple of each p column of $N=P T=$ $(6 p+1)(6 t+1)$ type, then $N=49(t=1), N=91(t=2)$ is displayed,
t in $(t=1),(t=2)$ is t of $6 t+1$ and t means the $t^{\prime} t h$ multiple of p column. That is, $N=49(n=8, t=1)$ is the $\operatorname{first}(t=1)$ multiple of $7, N=91(n=15, t=2)$ is the second $(t=2)$ multiple of 7 . If we write the multiple of each column on the cell as like this, as in the example of $N=49$, the record is a composite because some cells is filled, as in the example of $N=17$, the record is a prime because all cells is not filled.

And, as in the example of 91 , the first multiple of 2 column is same with the second multiple of 1 column, that is, the $t^{\prime} t h$ multiple of p column is duplicated with the $p^{\prime} t h$ multiple of t column. The blue cell means such duplication.

Definition 6. In Table 2.1,

Let us define $l(N)$ as the sum of the number written to all the cells in N or less.
Let us define $r(N)$ as the sum of the number except duplication of the numbers written to all the cells in N or less.

Theorem 2.1. $\quad N=6 n+1$ type

$$
\begin{aligned}
& l(N=6 n+1)=\sum_{p=1}^{\left[\frac{n-1}{7}\right]}\left[\frac{n-p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{n+1}{5}\right]}\left[\frac{n+p}{6 p-1}\right] \\
& r(N=6 n+1)=\sum_{p=1}^{\left.\frac{-1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n-p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\left[\frac{1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n+p}{6 p-1}\right]-(p-1)\right) \\
& l(6 n+1)-l(6(n-1)+1) \text { is the number of nontrivial divisor of } 6 n+1 . \\
& \tau(N=6 n+1)=2+l(6 n+1)-l(6(n-1)+1)
\end{aligned}
$$

$$
\sigma(N=6 n+1)=1+(6 n+1)+\sum_{p=1}^{\left[\frac{n-1}{7}\right]}\left(\left[\frac{n-p}{6 p+1}\right](6 p+1)\right)+\sum_{p=1}^{\left[\frac{n+1}{5}\right]}\left(\left[\frac{n+p}{6 p-1}\right](6 p-1)\right)
$$

$$
-\left\{\sum_{p=1}^{\left[\frac{(n-1)-1}{7}\right]}\left(\left[\frac{(n-1)-p}{6 p+1}\right](6 p+1)\right)+\sum_{p=1}^{\left[\frac{(n-1)+1}{5}\right]}\left(\left[\frac{(n-1)+p}{6 p-1}\right](6 p-1)\right)\right\}
$$

- $\beta(N=6 n+1)$ could be used by the one of formula below.
$\beta(N=6 n+1)=l(6 n+1)-l(6(n-1)+1)$

$$
\begin{aligned}
& =\sum_{p=1}^{\left[\frac{n-1}{7}\right]}\left[\frac{n-p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{n+1}{5}\right]}\left[\frac{n+p}{6 p-1}\right] \\
& -\left\{\sum_{p=1}^{\left[\frac{(n-1)-1}{7}\right]}\left[\frac{(n-1)-p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{(n-1)+1}{5}\right]}\left[\frac{(n-1)+p}{6 p-1}\right]\right\} \\
& \beta(N=6 n+1)=r(6 n+1)-r(6(n-1)+1) \\
& =\sum_{p=1}^{\left[\frac{-1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n-p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\left[\frac{1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n+p}{6 p-1}\right]-(p-1)\right) \\
& -\left\{\sum_{p=1}^{\left[\frac{-1+\sqrt{6(n-1)+1}}{6}\right]}\left(\left[\frac{(n-1)-p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\frac{\left[\frac{1+\sqrt{6(n-1)+1}}{6}\right.}{}}\left(\left[\frac{(n-1)+p}{6 p-1}\right]-(p-1)\right)\right\} \\
& \beta(N=6 n+1)=\tau(N)-2=\sum_{p=1}^{N}\left(\left[\frac{N}{p}\right]-\left[\frac{N-1}{p}\right]\right)-2=\sum_{p=1}^{6 n+1}\left(\left[\frac{6 n+1}{p}\right]-\left[\frac{6 n}{p}\right]\right)-2 \\
& \beta(N=6 n+1)=\sigma(6 n+1)-(1+(6 n+1))
\end{aligned}
$$

Theorem 2.2. $N=6 n-1$ type

$$
\begin{aligned}
& l(N=6 n-1)=\sum_{p=1}^{\left[\frac{n-1}{5}\right]}\left[\frac{n+p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{n+1}{7}\right]}\left[\frac{n-p}{6 p-1}\right] \\
& \left.r(N=6 n-1)=\sum_{p=1}^{\left[\frac{\sqrt{6 n}}{6}\right]}\left(\left[\frac{n+p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\left[\frac{\sqrt{6 n}}{6}\right.}\right]
\end{aligned}
$$

$$
l(6 n-1)-l(6(n-1)-1) \text { is the number of nontrivial divisor of } 6 n-1
$$

$$
\tau(N=6 n-1)=2+l(6 n-1)-l(6(n-1)-1)
$$

$$
\sigma(N=6 n-1)=1+(6 n-1)+\sum_{p=1}^{\left[\frac{n-1}{5}\right]}\left(\left[\frac{n+p}{6 p+1}\right](6 p+1)\right)+\sum_{p=1}^{\left[\frac{n+1}{7}\right]}\left(\left[\frac{n-p}{6 p-1}\right](6 p-1)\right)
$$

$$
-\left\{\sum_{p=1}^{\left[\frac{(n-1)-1}{5}\right]}\left(\left[\frac{(n-1)+p}{6 p+1}\right](6 p+1)\right)+\sum_{p=1}^{\left.\frac{[n-1)+1}{7}\right]}\left(\left[\frac{(n-1)-p}{6 p-1}\right](6 p-1)\right)\right\}
$$

- $\beta(N=6 n-1)$ could be used by the one of formula below.
$\beta(N=6 n-1)=l(6 n-1)-l(6(n-1)-1)$

$$
\begin{aligned}
& =\sum_{p=1}^{\left[\frac{n-1}{5}\right]}\left[\frac{n+p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{n+1}{7}\right]}\left[\frac{n-p}{6 p-1}\right] \\
& -\left\{\sum_{p=1}^{\left[\frac{(n-1)-1}{5}\right]}\left[\frac{(n-1)+p}{6 p+1}\right]+\sum_{p=1}^{\left.\frac{[(n-1)+1}{7}\right]}\left[\frac{(n-1)-p}{6 p-1}\right]\right\} \\
& \beta(N=6 n-1)=r(6 n-1)-r(6(n-1)-1) \\
& =\sum_{p=1}^{\left[\frac{\sqrt{6 n}}{6}\right]}\left(\left[\frac{n+p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\left[\frac{\sqrt{6 n}}{6}\right]}\left(\left[\frac{n-p}{6 p-1}\right]-(p-1)\right) \\
& -\left\{\sum_{p=1}^{\left[\frac{\sqrt{6(n-1)}}{6}\right]}\left(\left[\frac{(n-1)+p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\left[\frac{\sqrt{6(n-1)}}{6}\right]}\left(\left[\frac{(n-1)-p}{6 p-1}\right]-(p-1)\right)\right\} \\
& \beta(N=6 n-1)=\tau(N)-2=\sum_{p=1}^{N}\left(\left[\frac{N}{p}\right]-\left[\frac{N-1}{p}\right]\right)-2=\sum_{p=1}^{6 n-1}\left(\left[\frac{6 n-1}{p}\right]-\left[\frac{6 n-2}{p}\right]\right)-2 \\
& \beta(N=6 n-1)=\sigma(6 n-1)-(1+(6 n-1))
\end{aligned}
$$

Proof 2.1. $N=6 n+1$ type

In the case of $N=6 n+1=P T=(6 p+1)(6 t+1)$
Let us define $A_{p, t}=6 a_{p, t}+1$ as an arbitray $t^{\prime} t h$ multiple of p column in table 2.1.
According to theorem 1
$A_{p, t-1}=6(p+(t-1) P)+1, A_{p, t}=6(p+t P)+1, A_{p, t+1}=6(p+(t+1) P)+1$ and
$a_{p, t+1}-a_{p, t}=(p+(t+1) P)-(p+t P)=P, a_{p, t}-a_{p, t-1}=(p+t P)-(p+(t-1) P)=P$
So, $\left\{a_{p, t}\right\}$ is arithmetic progression, let us define d as the common difference, $d=P$,
$a_{p, t}=p+t P=a_{p, 1}+(t-1) d=7 p+1+(t-1) P$
Because $a_{p, t} \leq n$, so, $p+t P \leq n \rightarrow t \leq \frac{n-p}{P}$, so, length of $a_{p, t}$ is $\left[\frac{n-p}{P}\right]=\left[\frac{n-p}{6 p+1}\right]$
Because $a_{p, 1} \leq n$, so, $a_{p, 1}(=7 p+1) \leq n \rightarrow p \leq \frac{n-1}{7}$, so, number of p column is $\left[\frac{n-1}{7}\right]$
Therefore, let us define $l_{+}(N)$ as $l(N)$ of $N=(6 p+1)(6 t+1), l_{+}(N=6 n+1)=\sum_{p=1}^{\left[\frac{n-1}{7}\right]}\left[\frac{n-p}{6 p+1}\right]$

And, a general term of the $m^{\prime} t h$ multiple of t column is $a_{t, m}=t+m(6 t+1)$.
If $m=p$, then $a_{t, p}=t+p(6 t+1)=t+6 t p+p=p+t(6 p+1)=p+t P=a_{p, t}$.
That is, t^{\prime} th term of p as the $t^{\prime} t h$ multiple of p column is duplicated with p^{\prime} th term of t as the p^{\prime} th multiple of t column. To exclude such duplication, in the case of $t<p$, we exclude only the $t^{\prime} t h$ duplicated multiple of $a_{p, t}$ in $1 \leq t<p$, because $a_{t, m}$ has already same thing.
Let us define $\left\{c_{p, t}\right\}$ as arithmetic progression except duplication of $a_{p, t}$, the common difference is $d=P$, but the initial term should be $t=p$. So
$c_{p, 1}=a_{p, p}=p+p P=p+p(6 p+1)=6 p^{2}+2 p$
The length of $c_{p, t}$ is the length of $a_{p, t}-(p-1)$, so, $\left[\frac{n-p}{P}\right]-(p-1)=\left[\frac{n-p}{6 p+1}\right]-(p-1)$
Because $c_{p, 1} \leq n$, so, $c_{p, 1}\left(=6 p^{2}+2 p\right) \leq n \rightarrow 1 \leq p \leq \frac{-1+\sqrt{6 n+1}}{6}$
Therefore, Let us define $r_{+}(N)$ as $r(N)$ of $N=(6 p+1)(6 t+1)$

$$
r_{+}(N=6 n+1)=\sum_{p=1}^{\left[\frac{-1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n-p}{6 p+1}\right]-(p-1)\right)
$$

For reference, $c_{p, 1}$ is perfect squre because $6\left(6 p^{2}+2 p\right)+1=36 p^{2}+12 p+1=(6 p+1)^{2}$.

In the case of $N=6 n+1=P T=(6 p-1)(6 t-1)$
Let us define $B_{p, t}=6 b_{p, t}+1$ as an arbitray $t^{\prime} t h$ multiple of p column in table 2.1.
According to theorem 1
$B_{p, t-1}=6(-p+(t-1) P)+1, B_{p, t}=6(-p+t P)+1, B_{p, t+1}=6(-p+(t+1) P)+1$ and
$b_{p, t+1}-b_{p, t}=(-p+(t+1) P)-(-p+t P)=P, b_{p, t}-b_{p, t-1}=(-p+t P)-(-p+(t-$ 1) $P=P$.

So, $\left\{b_{p, t}\right\}$ is arithmetic progression, let us define d as the common difference, $d=P$,
a general term is $b_{p, t}=-p+t P=b_{p, 1}+(t-1) d=5 p-1+(t-1) P$
Because $b_{p, t} \leq n$, so, $-p+t P \leq n \rightarrow t \leq \frac{n+p}{P}$, so, the length of $b_{p, t}$ is $\left[\frac{n+p}{P}\right]=\left[\frac{n+p}{6 p-1}\right]$
Because $b_{p, 1} \leq n$, so, $b_{p, 1}=5 p-1 \leq n \rightarrow p \leq \frac{n+1}{5}$, so, the number of p column is $\left[\frac{n+1}{5}\right]$
Therefore, let us define $l_{-}(N)$ as $l(N)$ of $N=(6 p-1)(6 t-1), l_{-}(N=6 n+1)=\sum_{p=1}^{\left[\frac{n+1}{5}\right]}\left[\frac{n+p}{6 p-1}\right]$

And, a general term of the $m^{\prime} t h$ multiple of t column is $b_{t, m}=-t+m(6 t-1)$.
If $m=p$, then $b_{t, p}=-t+p(6 t-1)=-t+6 t p-p=-p+t(6 p-1)=-p+t P=b_{p, t}$
According to the same principle as the above $N=(6 p+1)(6 t+1)$, let us difine $\left\{d_{p, t}\right\}$ as arithmetic progression except duplication of $b_{p, t}$, the common difference is $d=P$, but the initial term should be $t=p$. So, $d_{p, 1}=b_{p, p}=-p+p P=-p+p(6 p-1)=6 p^{2}-2 p$
The length of $d_{p, t}$ is the length of $b_{p, t}-(p-1)$, so, $\left[\frac{n+p}{P}\right]-(p-1)=\left[\frac{n+p}{6 p-1}\right]-(p-1)$
Because, $d_{p, 1} \leq n$, so, $d_{p, 1}=6 p^{2}-2 p \leq n \rightarrow 1 \leq p \leq \frac{1+\sqrt{6 n+1}}{6}$
Therefore, let us define $r_{-}(N)$ as $r(N)$ of $N=(6 p-1)(6 t-1)$

$$
r_{-}(N=6 n+1)=\sum_{p=1}^{\left[\frac{1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n+p}{6 p-1}\right]-(p-1)\right)
$$

For reference, $d_{p, 1}$ is perfect squre because $6\left(6 p^{2}-2 p\right)+1=36 p^{2}-12 p+1=(6 p-1)^{2}$.
By summarizing the above contents, $l(N)=l_{+}(N)+l_{-}(N)$ and $r(N)=r_{+}(N)+r_{-}(N)$, so

$$
\begin{aligned}
& l(N=6 n+1)=\sum_{p=1}^{\left[\frac{n-1}{7}\right]}\left[\frac{n-p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{n+1}{5}\right]}\left[\frac{n+p}{6 p-1}\right] \\
& r(N=6 n+1)=\sum_{p=1}^{\left.\frac{-1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n-p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\left[\frac{1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n+p}{6 p-1}\right]-(p-1)\right)
\end{aligned}
$$

Let us define $U=\left[\frac{n-p}{6 p+1}\right]-\left[\frac{(n-1)-p}{6 p+1}\right], V=\left[\frac{n+p}{6 p-1}\right]-\left[\frac{(n-1)+p}{6 p-1}\right], R=\sum_{P>1}^{P<N} U+\sum_{P>1}^{P<N} V$
If $P \mid 6 n+1$ then $P \nmid 6(n-1)+1$, so
The length of $a_{p, t}$ is $\left[\frac{n-p}{6 p+1}\right]=\frac{n-p}{6 p+1}=t$, and, $\frac{(n-1)-p}{6 p+1}<t \rightarrow\left[\frac{(n-1)-p}{6 p+1}\right]=t-1$,
Therefore, $U=\left[\frac{n-p}{6 p+1}\right]-\left[\frac{(n-1)-p}{6 p+1}\right]=t-(t-1)=1$,
The length of $b_{p, t}$ is $\left[\frac{n+p}{6 p-1}\right]=\frac{n+p}{6 p-1}=t$, and, $\frac{(n-1)+p}{6 p-1}<t \rightarrow\left[\frac{(n-1)+p}{6 p-1}\right]=t-1$
Therefore, $V=\left[\frac{n+p}{6 p-1}\right]-\left[\frac{(n-1)+p}{6 p-1}\right]=t-(t-1)=1$
If $P \nmid 6 n+1$,
let us define $m<n<o, P|6 m+1, P| 6 o+1, \frac{6 m+1}{P}=6 t \pm 1, \frac{6 o+1}{P}=6(t+1) \pm 1$
$t<\frac{n-p}{6 p+1}<t+1 \rightarrow\left[\frac{n-p}{6 p+1}\right]=t$, and, $t \leq \frac{(n-1)-p}{6 p+1}<t+1 \rightarrow\left[\frac{(n-1)-p}{6 p+1}\right]=t$, so,
$U=\left[\frac{n-p}{6 p+1}\right]-\left[\frac{(n-1)-p}{6 p+1}\right]=t-t=0$
$t<\frac{n+p}{6 p-1}<t+1 \rightarrow\left[\frac{n+p}{6 p-1}\right]=t$, and, $t \leq \frac{(n-1)+p}{6 p-1}<t+1 \rightarrow\left[\frac{(n-1)+p}{6 p-1}\right]=t$, so,
$V=\left[\frac{n+p}{6 p-1}\right]-\left[\frac{(n-1)+p}{6 p-1}\right]=t-t=0$
By summarizing the above contents, if $P \mid 6 n+1$ then $U=V=1$,
if $P \nmid 6 n+1$, then $U=V=0$, so,

$$
\begin{aligned}
R & =\sum_{P>1}^{P<N} U+\sum_{P>1}^{P<N} V=\sum_{6 p+1 \mid N}^{1<P<N} U+\sum_{6 p+1 \nmid N}^{1<P<N} U+\sum_{6 p-1 \mid N}^{1<P<N} V+\sum_{6 p-1 \nmid N}^{1<P<N} V \\
& =\sum_{6 p+1 \mid N}^{1<P<N} U+\sum_{6 p-1 \mid N}^{1<P<N} V+\sum_{6 p+1 \nmid N}^{1<P<N} U+\sum_{6 p-1 \nmid N}^{1<P<N} V=\sum_{6 p+1 \mid N}^{1<P<N} 1+\sum_{6 p-1 \mid N}^{1<P<N} 1+\sum_{6 p+1 \nmid N}^{1<P<N} 0+\sum_{6 p-1 \nmid N}^{1<P<N} 0 \\
& =\sum_{P \mid N}^{1<P<N} 1+\sum_{P \nmid N}^{1<P<N} 0=\sum_{P \mid N}^{1<P<N} 1
\end{aligned}
$$

R is the number of nontrivial divisor of N because the number of nontrivial divisor of N is $\sum_{P \mid N}^{1<P<N} 1$,

And, if $W=\left[\frac{n-p}{6 p+1}\right]+\left[\frac{n+p}{6 p-1}\right], X=\left[\frac{(n-1)-p}{6 p+1}\right]+\left[\frac{(n-1)+p}{6 p-1}\right]$, then $W-X=U+V$
$l(6 n+1)-l(6(n-1)+1)=\sum_{P>1}^{P<N} W-\sum_{P>1}^{P<N} X=\sum_{P>1}^{P<N}(W-X)=\sum_{P>1}^{P<N}(U+V)=\sum_{P>1}^{P<N} U+\sum_{P>1}^{P<N} V$
,so, $l(6 n+1)-l(6(n-1)+1)=R$.
Therefore, $l(6 n+1)-l(6(n-1)+1)$ is the number of non-trivial divisor of N.

Because $\tau(N=6 n+1)$ is sum of the number of trivial divisor and the number of non-trivial divisor, and the number of trivial divisor of N is 2 ,
$\tau(N=6 n+1)=2+l(6 n+1)-l(6(n-1)+1)$
Because $\sigma(N=6 n+1)$ is sum of trivial divisor and non-trivial divisor, and the trivial divisor of N are $1, N$,

$$
\sigma(N=6 n+1)=1+N+\sum_{P \mid N}^{1<P<N} P=1+N+\sum_{P \mid N}^{1<P<N}(1 \times P)+\sum_{P \nmid N}^{1<P<N}(0 \times P)
$$

$$
=1+N+\sum_{(P=6 p+1) \mid N}^{1<P<N}(1 \times P)+\sum_{(P=6 p-1) \mid N}^{1<P<N}(1 \times P)+\sum_{(P=6 p+1) \nmid N}^{1<P<N}(0 \times P)+\sum_{(P=6 p-1) \nmid N}^{1<P<N}(0 \times P)
$$

$$
=1+N+\sum_{(P=6 p+1) \mid N}^{1<P<N}(U \times P)+\sum_{(P=6 p-1) \mid N}^{1<P<N}(V \times P)+\sum_{(P=6 p+1) \nmid N}^{1<P<N}(U \times P)+\sum_{(P=6 p-1) \nmid N}^{1<P<N}(V \times P)
$$

$$
=1+N+\sum_{P>1}^{P<N}(U \times P)+\sum_{P>1}^{P<N}(V \times P)=1+N+\sum_{P>1}^{P<N}(W \times P)-\sum_{P>1}^{P<N}(X \times P), \text { so }
$$

$$
\sigma(N=6 n+1)=1+(6 n+1)+\sum_{p=1}^{\left[\frac{n-1}{7}\right]}\left(\left[\frac{n-p}{6 p+1}\right](6 p+1)\right)+\sum_{p=1}^{\left[\frac{n+1}{5}\right]}\left(\left[\frac{n+p}{6 p-1}\right](6 p-1)\right)
$$

$$
-\left\{\sum_{p=1}^{\left[\frac{(n-1)-1}{7}\right]}\left(\left[\frac{(n-1)-p}{6 p+1}\right](6 p+1)\right)+\sum_{p=1}^{\left[\frac{(n-1)+1}{5}\right]}\left(\left[\frac{(n-1)+p}{6 p-1}\right](6 p-1)\right)\right\}
$$

In addition, because $l(6 n+1)-l(6(n-1)+1)$ is the number of non-trivial divisor of N if N is a composite number, then, $l(6 n+1)-l(6(n-1)+1)>0$,
if N is a prime number, then, $l(6 n+1)-l(6(n-1)+1)=0$.
Therefore,

$$
\begin{aligned}
\beta(N=6 n+1) & =l(6 n+1)-l(6(n-1)+1) \\
& =\sum_{p=1}^{\left[\frac{n-1}{7}\right]}\left[\frac{n-p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{n+1}{5}\right]}\left[\frac{n+p}{6 p-1}\right] \\
& -\left\{\sum_{p=1}^{\left.\frac{[(n-1)-1}{7}\right]}\left[\frac{(n-1)-p}{6 p+1}\right]+\sum_{p=1}^{5}\left[\frac{[n-1)+p}{6 p-1}\right]\right\}
\end{aligned}
$$

For the length of $c_{p, t}, d_{p, t}$
if $P \mid 6 n+1$, for the length of $c_{p, t},\left[\frac{n-p}{6 p+1}\right]-(p-1)-\left(\left[\frac{(n-1)-p}{6 p+1}\right]-(p-1)\right)=1$,
for the length of $d_{p, t},\left[\frac{n+p}{6 p-1}\right]-(p-1)-\left(\left[\frac{(n-1)+p}{6 p-1}\right]-(p-1)\right)=1$.
if $P \nmid 6 n+1$, for the length of $c_{p, t},\left[\frac{n-p}{6 p+1}\right]-(p-1)-\left(\left[\frac{(n-1)-p}{6 p+1}\right]-(p-1)\right)=0$,
for the length of $d_{p, t},\left[\frac{n+p}{6 p-1}\right]-(p-1)-\left(\left[\frac{(n-1)+p}{6 p-1}\right]-(p-1)\right)=0$.
So, if N is a composite number then $r(6 n+1)-r(6(n-1)+1)>0$,
If N is a prime number then $r(6 n+1)-r(6(n-1)+1)=0$.
Therefore,

$$
\begin{aligned}
& \beta(N=6 n+1)=r(6 n+1)-r(6(n-1)+1) \\
&=\sum_{p=1}^{\left.\frac{-1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n-p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\left[\frac{1+\sqrt{6 n+1}}{6}\right]}\left(\left[\frac{n+p}{6 p-1}\right]-(p-1)\right) \\
&-\left\{\begin{array}{l}
{\left[\frac{-1+\sqrt{6(n-1)+1}}{6}\right]} \\
\sum_{p=1}\left(\left[\frac{(n-1)-p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{6}\left(\left[\frac{1+\sqrt{6(n-1)+1}}{6}\right]\right.
\end{array}\right.
\end{aligned}
$$

And, if N is a composite number then $\tau(6 n+1)-2>0$, If N is a prime number then $\tau(6 n+1)-2=0$,so, $\beta(N=6 n+1)=\tau(6 n+1)-2$.

And, $\tau(N=6 n+1)=\sum_{p=1}^{N}\left(\left[\frac{N}{p}\right]-\left[\frac{N-1}{p}\right]\right)$ is also satistied, so,
$\beta(N=6 n+1)=\tau(N=6 n+1)-2=\sum_{p=1}^{N}\left(\left[\frac{N}{p}\right]-\left[\frac{N-1}{p}\right]\right)-2$

$$
=\sum_{p=1}^{6 n+1}\left(\left[\frac{6 n+1}{p}\right]-\left[\frac{6 n+1-1}{p}\right]\right)-2=\sum_{p=1}^{6 n+1}\left(\left[\frac{6 n+1}{p}\right]-\left[\frac{6 n}{p}\right]\right)-2 .
$$

if N is a composite number then $\sigma(6 n+1)-(1+6 n+1)>0$, If N is a prime number then $\sigma(6 n+1)-(1+6 n+1)=0$,so, $\beta(N=6 n+1)=\sigma(6 n+1)-(1+6 n+1)$.

Proof 2.2. $N=6 n-1$ type

$p(P)$	$\mathrm{N}=6 \mathrm{n}-1=\mathrm{PT}=(6 \mathrm{p}+1)(6 \mathrm{t}-1)$ type				$\mathrm{N}=6 \mathrm{n}-1=\mathrm{PT}=(6 \mathrm{p}-1)(6 \mathrm{t}+1)$ type			
	1(P=7)	2(P=13)	3(P=19)	...	1(P=5)	2(P=11)	$\mathbf{3}(\mathbf{P}=17)$...
1(N=5)								
2($\mathrm{N}=11$)								
\ldots								
6($\mathrm{N}=35$)	$35(\mathrm{t}=1)$				$35(\mathrm{t}=1)$			
...								
11($\mathrm{N}=65$)		$65(\mathrm{t}=1)$			$65(\mathrm{t}=2)$			
12($\mathrm{N}=71$)								
13(N=77)	$77(\mathrm{t}=2)$					$77(\mathrm{t}=1)$		
\ldots								
16($\mathrm{N}=95$)			95(t=1)		95(t=3)			
...								

(Table 2.2. $N=6 n-1$ type)

We indicate $N=6 n-1$ of $N=6 n-1$ type number on the record, P of $N=P T$ on the column in Table 2.2. Because $N=P T=(6 p+1)(6 t-1)$ or $N=P T=(6 p-1)(6 t+1)$ in the case of $N=6 n-1$ according to theorem 1 , we indicate $N=P T=(6 p+1)(6 t-1)$ on the left side of column, and we indicate $N=P T=(6 p-1)(6 t+1)$ on the right side of column.
The remaining contents is the same as table 2.1

However, in the case of duplication unlike $N=6 n+1$, as in the example of $N=65$, the first multiple of 2 column of $(6 p+1)(6 t-1)$ type is same with the second multiple of 1 column of $(6 p-1)(6 t+1)$ type.
That is, the $t^{\prime} t h$ multiple of p column of $(6 p+1)(6 t-1)$ type is duplicated with the $p^{\prime} t h$ multiple of t column of $(6 p-1)(6 t+1)$ type. The blue cell means such duplication.

In the case of $N=6 n-1=P T=(6 p+1)(6 t-1)$
Let us define $A_{p, t}=6 a_{p, t}-1$ as an arbitray $t^{\prime} t h$ multiple of p column in table 2.2 .
According to theorem 1,
$A_{p, t-1}=6(-p+(t-1) P)-1, A_{p, t}=6(-p+t P)-1, A_{p, t+1}=6(-p+(t+1) P)-1$ and
$a_{p, t+1}-a_{p, t}=(-p+(t+1) P)-(-p+t P)=P, a_{p, t}-a_{p, t-1}=(-p+t P)-(-p+(t-$

1) $P=P$. So, $\{a p, t\}$ is arithmetic progression, let us define d as the common difference, $d=P$,
a general term is $a_{p, t}=-p+t P=a_{p, 1}+(t-1) d=5 p+1+(t-1) P$
Because $a_{p, t} \leq n$, so, $-p+t P \leq n \rightarrow t \leq \frac{n+p}{P}$, so, the length of $a_{p, t}$ is $\left[\frac{n+p}{P}\right]=\left[\frac{n+p}{6 p+1}\right]$
Because $a_{p, 1} \leq n$, so, $a_{p, 1}=5 p+1 \leq n \rightarrow p \leq \frac{n-1}{5}$, so, the number of p column is $\left[\frac{n-1}{5}\right]$
Therefore, let us define $l_{+}(N)$ as $l(N)$ of $N=(6 p+1)(6 t-1), l_{+}(N=6 n-1)=\sum_{p=1}^{\left[\frac{n-1}{5}\right]}\left[\frac{n+p}{6 p+1}\right]$

In the case of $N=6 n-1=P T=(6 p-1)(6 t+1)$
Let us define $B_{p, t}=6 b_{p, t}-1$ as an arbitray $t^{\prime} t h$ multiple of p column in table 2.2.
According to theorem 1 ,
$B_{p, t-1}=6(p+(t-1) P)-1, B_{p, t}=6(p+t P)-1, B_{p, t+1}=6(p+(t+1) P)-1$
$b_{p, t+1}-b_{p, t}=(p+(t+1) P)-(p+t P)=P, b_{p, t}-b_{p, t-1}=(p+t P)-(p+(t-1) P)=P$
So, $\left\{b_{p, t}\right\}$ is arithmetic progression, let us define d as the common difference, $d=P$, a general term is $b_{p, t}=p+t P=b_{p, 1}+(t-1) d=7 p-1+(t-1) P$.

Because $b_{p, t} \leq n$, so, $p+t P \leq n \rightarrow t \leq \frac{n-p}{P}$, so, the length of $b_{p, t}$ is $\left[\frac{n-p}{P}\right]=\left[\frac{n-p}{6 p-1}\right]$
Because $b_{p, 1} \leq n$, so, $b_{p, 1}=7 p-1 \leq n \rightarrow p \leq \frac{n+1}{7}$, so, the number of p column is $\left[\frac{n+1}{7}\right]$

Therefore, let us define $l_{-}(N)$ as $l(N)$ of $N=(6 p-1)(6 t+1), l_{-}(N=6 n-1)=\sum_{p=1}^{\left[\frac{n+1}{7}\right]}\left[\frac{n-p}{6 p-1}\right]$

By summarizing the above contents, because $l(N)=l_{+}(N)+l_{-}(N)$,
$l(N=6 n-1)=\sum_{p=1}^{\left[\frac{n-1}{5}\right]}\left[\frac{n+p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{n+1}{7}\right]}\left[\frac{n-p}{6 p-1}\right]$

In the case of $N=6 n-1=P T=(6 p+1)(6 t-1), a_{p, t}=-p+t P$
In the case of $N=6 n-1=P T=(6 p-1)(6 t+1), b_{p, t}=p+t P$
Because a general term of $m^{\prime} t h$ multiple of t column in $b_{p, t}$ is $b_{t, m}=t+m(6 t-1)$,
if $m=p$ then $b_{t, p}=t+p(6 t-1)=t+6 t p-p=-p+t(6 p+1)=a_{p, t}$.
We exclude the t^{\prime} th duplication multiple in $1 \leq t<p$ in each $a_{p, t}$ and $b_{p, t}$ to avoid the such duplication.

Let us define $\left\{c_{p, t}\right\}$ as arithmetic progression except duplication of $a_{p, t}$, the common difference is $d=6 p+1$, but the initial term should be $t=p$.
So, $c_{p, 1}=a_{p, p}=-p+p P=-p+p(6 p+1)=6 p^{2}$
The length of $c_{p, t}$ is the length of $a_{p, t}-(p-1)$, so, $\left[\frac{n+p}{P}\right]-(p-1)=\left[\frac{n+p}{6 p+1}\right]-(p-1)$
Because, $c_{p, 1} \leq n$, so, $c_{p, 1}=6 p^{2} \leq n \rightarrow 1 \leq p \leq \frac{\sqrt{6 n}}{6}$
Therefore, let us define $r_{+}(N)$ as $r(N)$ of $N=(6 p+1)(6 t-1)$
$r_{+}(N=6 n-1)=\sum_{p=1}^{\left[\frac{\sqrt{6 n}}{6}\right]}\left(\left[\frac{n+p}{6 p+1}\right]-(p-1)\right)$
For reference, $c_{p, 1}$ is not perfect squre because $6\left(6 p^{2}\right)-1=36 p^{2}-1$

If we define $\left\{d_{p, t}\right\}$ as arithmetic progression except duplication of $b_{p, t}$, the common difference is $d=6 p-1$, but the initial term should be $t=p$.
So, $d_{p, 1}=b_{p, p}=p+p P=p+p(6 p-1)=6 p^{2}$
The length of $d_{p, t}$ is the length of $b_{p, t}-(p-1)$, so, $\left[\frac{n-p}{P}\right]-(p-1)=\left[\frac{n-p}{6 p-1}\right]-(p-1)$
Because $d_{p, 1} \leq n$, so, $d_{p, 1}=6 p^{2} \leq n \rightarrow 1 \leq p \leq \frac{\sqrt{6 n}}{6}$
Therefore, let us define $r_{-}(N)$ as $r(N)$ of $N=(6 p-1)(6 t+1)$
$r_{-}(N=6 n-1)=\sum_{p=1}^{\left[\frac{\sqrt{6 n}}{6}\right]}\left(\left[\frac{n-p}{6 p-1}\right]-(p-1)\right)$
For reference, $d_{p, 1}$ is not also perfect squre because $6\left(6 p^{2}\right)-1=36 p^{2}-1$

By summarizing the above contents, because $r(N)=r_{+}(N)+r_{-}(N)$
$r(N=6 n-1)=\sum_{p=1}^{\left[\frac{\sqrt{6 n}}{6}\right]}\left(\left[\frac{n+p}{6 p+1}\right]-(p-1)\right)+\sum_{p=1}^{\left[\frac{\sqrt{6 n}}{6}\right]}\left(\left[\frac{n-p}{6 p-1}\right]-(p-1)\right)$

In addition, for the same reason as $N=6 n+1$ (detail proof is omitted)
$\tau(N=6 n-1)=2+l(6 n-1)-l(6(n-1)-1)$

$$
\begin{aligned}
\sigma(N=6 n-1)= & 1+(6 n-1)+\sum_{p=1}^{\left[\frac{n-1}{5}\right]}\left(\left[\frac{n+p}{6 p+1}\right](6 p+1)\right)+\sum_{p=1}^{\left[\frac{n+1}{7}\right]}\left(\left[\frac{n-p}{6 p-1}\right](6 p-1)\right) \\
- & \left\{\sum_{p=1}^{\left[\frac{[n-1)-1}{5}\right]}\left(\left[\frac{(n-1)+p}{6 p+1}\right](6 p+1)\right)+\sum_{p=1}^{\left[\frac{n-1)+1}{7}\right]}\left(\left[\frac{(n-1)-p}{6 p-1}\right](6 p-1)\right)\right\}
\end{aligned}
$$

If N is a composite number, $l(6 n-1)-l(6(n-1)-1)>0, r(6 n-1)-r(6(n-1)-1)>0$ If N is a prime number, $l(6 n-1)-l(6(n-1)-1)>0, r(6 n-1)-r(6(n-1)-1)=0$.
Therefore,

$$
\begin{aligned}
& \beta(N=6 n-1)=l(6 n-1)-l(6(n-1)-1) \\
& =\sum_{p=1}^{\left[\frac{n-1}{5}\right]}\left[\frac{n+p}{6 p+1}\right]+\sum_{p=1}^{\left[\frac{n+1}{7}\right]}\left[\frac{n-p}{6 p-1}\right] \\
& -\left\{\sum_{p=1}^{\left[\frac{(n-1)-1}{5}\right]}\left[\frac{(n-1)+p}{6 p+1}\right]+\sum_{p=1}^{\left.\frac{[(n-1)+1}{7}\right]}\left[\frac{(n-1)-p}{6 p-1}\right]\right\} \\
& \beta(N=6 n-1)=r(6 n-1)-r(6(n-1)-1)
\end{aligned}
$$

$$
\begin{aligned}
& \beta(N=6 n-1)=\tau(N=6 n-1)-2=\sum_{p=1}^{N}\left(\left[\frac{N}{p}\right]-\left[\frac{N-1}{p}\right]\right)-2 \\
& =\sum_{p=1}^{6 n-1}\left(\left[\frac{6 n-1}{p}\right]-\left[\frac{6 n-1-1}{p}\right]\right)-2=\sum_{p=1}^{6 n-1}\left(\left[\frac{6 n-1}{p}\right]-\left[\frac{6 n-2}{p}\right]\right)-2 \\
& \beta(N=6 n-1)=\sigma(6 n-1)-(1+(6 n-1))
\end{aligned}
$$

Theorem 3. $\rho(N)$
$\rho(N)=\left[\frac{\beta(N)}{\beta(N)-w}\right], 0<w<\frac{1}{2}, w \in \overline{\mathbb{R}}, w=\frac{1}{e}, \frac{1}{\pi}, \frac{1}{N}(N>2), \ldots$

If N is not a prime number then

$$
\rho(N)=\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(\frac{2 k \pi \beta(N)}{\beta(N)-w}\right)}{k}=\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi \beta(N)}{\beta(N)-w}}-e^{-2 j \frac{k \pi \beta(N)}{\beta(N)-w}}}{2 j k}
$$

if N is a prime number then

$$
\begin{aligned}
\rho(N) & =\left\{\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2 k \pi \frac{\beta(N)}{\beta(N)-w}\right)}{k}\right\}+\frac{1}{2} \\
& =\left\{\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi \beta(N)}{\beta(N)-w}}-e^{-2 j \frac{k \pi \beta(N)}{\beta(N)-w}}}{2 j k}\right\}+\frac{1}{2}
\end{aligned}
$$

Especially, if $=\frac{1}{\pi}$,
if N is not a prime number then

$$
\begin{aligned}
\rho(N) & =\frac{\pi \beta(N)}{\pi \beta(N)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(\frac{2 k \pi^{2} \beta(N)}{\pi \beta(N)-1}\right)}{k} \\
& =\frac{\pi \beta(N)}{\pi \beta(N)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi^{2} \beta(N)}{\pi \beta(N)-1}}-e^{-2 j j \frac{k \pi^{2} \beta(N)}{\pi \beta(N)-1}}}{2 j k}
\end{aligned}
$$

if N is a prime number then

$$
\begin{aligned}
\rho(N) & =\left\{\frac{\pi \beta(N)}{\pi \beta(N)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(\frac{2 k \pi^{2} \beta(N)}{\pi \beta(N)-1}\right)}{k}\right\}+\frac{1}{2} \\
& =\left\{\frac{\pi \beta(N)}{\pi \beta(N)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi^{2} \beta(N)}{\pi \beta(N)-1}}-e^{-2 j \frac{k \pi^{2} \beta(N)}{\pi \beta(N)-1}}}{2 j k}\right\}+\frac{1}{2}
\end{aligned}
$$

Proof 3. In the case of $\beta(N)=0$, if $w \neq 0$ then $\rho(N)=0$, because $\rho(N)=\left[\frac{\beta(N)}{\beta(N)-w}\right]=\left[\frac{0}{0-w}\right]$ In the case of $\beta(N)>0$,
if we want to make $\rho(N)=\left[\frac{\beta(N)}{\beta(N)-w}\right]=1$, then $\beta(N)-w>0$ when $1 \leq \frac{\beta(N)}{\beta(N)-w}<2$,
so, $\beta(N)-w \leq \beta(N)<2(\beta(N)-w)$ and because the left side of the inequality $\beta(N)-w \leq \beta(N)$ is $-w \leq 0 \rightarrow 0 \leq w$, but if the case of the above $\beta(N)=0$ is satisfied, then $w \neq 0$, so, $0<w$
The right side of the inequality $\beta(N)<2(\beta(N)-w) \rightarrow \beta(N)<2 \beta(N)-2 w \rightarrow 2 w<\beta(N) \rightarrow$ $w<\frac{\beta(N)}{2}$. Therefore, by summarizing the above contents, $0<w<\frac{\beta(N)}{2}$,

If $\rho(N)$ is always held regardless of the value of $\beta(N)$, then $\beta(N)=1$ as the minimum value of $\beta(N)$. So, $0<w<\frac{\beta(N)}{2} \rightarrow 0<w<\frac{1}{2}$. Therefore, $0<w<\frac{1}{2}, w \in \overline{\mathbb{R}}$.

And, $0<\frac{1}{e}<\frac{1}{2}, \frac{1}{e} \in \overline{\mathbb{R}}, 0<\frac{1}{\pi}<\frac{1}{2}, \frac{1}{\pi} \in \overline{\mathbb{R}}$, If $N>2$ then $0<\frac{1}{N}<\frac{1}{2}, \frac{1}{N} \in \overline{\mathbb{R}}$.
Therefore, $w=\frac{1}{e}, \frac{1}{\pi}, \frac{1}{N}(N>2), \ldots$

When N is not a prime number, $\beta(N)>0,0<w<\frac{1}{2}, w \in \overline{\mathbb{R}}$, so, $1<\frac{\beta(N)}{\beta(N)-w}<2 \rightarrow \frac{\beta(N)}{\beta(N)-w} \in \overline{\mathbb{R}}$ For an arbitrary $x \in \overline{\mathbb{R}},[x]=x-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin (2 k \pi x)}{k}$
[3] ,So,
$\rho(N)=\left[\frac{\beta(N)}{\beta(N)-w}\right]=\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2 k \pi \frac{\beta(N)}{q(N)-w}\right)}{k}$.
In addition, $\sin (2 a)=2 \sin (a) \cos (a), \cos (a)=\frac{e^{j a}+e^{-j a}}{2}, \sin (a)=\frac{e^{j a}-e^{-j a}}{2 j}[4],[5]$,so,
$\sin (2 a)=2 \sin (a) \cos (a)=2 \frac{e^{j a}-e^{-j a}}{2 j} \frac{e^{j a}+e^{-j a}}{2}=\frac{e^{j 2 a}-e^{-j 2 a}}{2 j}$.
Therefore, $\rho(N)=\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi \beta(N)}{\beta(N)-w}}-e^{-2 j \frac{k \pi \beta(N)}{\beta(N)-w}}}{2 j k}$

When N is a prime number, because $\beta(N)=0$
$\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2 k \pi \frac{\beta(N)}{\beta(N)-w}\right)}{k}=\frac{0}{0-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2 k \pi \frac{0}{0-w}\right)}{k}=-\frac{1}{2}$,
$\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi \beta(N)}{\beta(N)-w}}-e^{-2 j \frac{k \pi \beta(N)}{\beta(N)-w}}}{2 j k}=\frac{0}{0-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j k \pi \frac{0}{0-w}}-e^{-2 j k \pi \frac{0}{0-w}}}{2 j k}=-\frac{1}{2}$
And, because $\rho(N)=0$

$$
\begin{aligned}
\rho(N) & =0=-\frac{1}{2}+\frac{1}{2}=\left\{\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(2 k \pi \frac{\beta(N)}{\beta(N)-w}\right)}{k}\right\}+\frac{1}{2} \\
& =\left\{\frac{\beta(N)}{\beta(N)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi \beta(N)}{\beta(N)-w}}-e^{-2 j \frac{k \pi \beta(N)}{\beta(N)-w}}}{2 j k}\right\}+\frac{1}{2}
\end{aligned}
$$

Especially, if $=\frac{1}{\pi}$,
when N is not a prime number, then

$$
\begin{aligned}
\rho(N) & =\frac{\beta(N)}{\beta(N)-\frac{1}{\pi}}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(\frac{2 k \pi \beta(N)}{\beta(N)-\frac{1}{\pi}}\right)}{k}=\frac{\pi \beta(N)}{\pi \beta(N)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(\frac{2 k \pi^{2} \beta(N)}{\pi \beta(N)-1}\right)}{k} \\
& =\frac{\beta(N)}{\beta(N)-\frac{1}{\pi}}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi \beta(N)}{\beta(N)--\frac{1}{\pi}}-e^{-2 j \frac{k \pi \beta(N)}{\beta(N)-\frac{1}{\pi}}}} 2 j k}{2 j k} \\
& =\frac{\pi \beta(N)}{\pi \beta(N)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi^{2} \beta(N)}{\pi \beta(N)-1}}-e^{-2 j \frac{k \pi^{2} \beta(N)}{\pi \beta(N)-1}}}{2 j}
\end{aligned}
$$

when N is a prime number, then

$$
\begin{aligned}
\rho(N) & =\left\{\frac{\pi \beta(N)}{\pi \beta(N)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\sin \left(\frac{2 k \pi^{2} \beta(N)}{\pi \beta(N)-1}\right)}{k}\right\}+\frac{1}{2}=-\frac{1}{2}+\frac{1}{2}=0 \\
& =\left\{\frac{\pi \beta(N)}{\pi \beta(N)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{2 j \frac{k \pi^{2} \beta(N)}{\pi \beta(N)-1}}-e^{-2 j \frac{k \pi^{2} \beta(N)}{\pi \beta(N)-1}}}{2 j k}\right\}+\frac{1}{2}=-\frac{1}{2}+\frac{1}{2}=0
\end{aligned}
$$

Theorem 4. $\pi(N)$
For $0<w<\frac{1}{2}, w \in \overline{\mathbb{R}}, w=\frac{1}{e}, \frac{1}{\pi}, \frac{1}{N}(N>2), \ldots$

$$
\begin{aligned}
& \pi(6 n+3)=2 n+2-\left\{\sum_{k=1}^{n} \rho(6 k-1)+\sum_{k=1}^{n} \rho(6 k+1)\right\}=\pi(6 n+1)=\pi(6 n+2)=\pi(6 n+4) \\
& =2 n+2-\frac{2}{3} \sum_{k=1}^{n}\left\{\frac{\beta(6 k-1)}{\beta(6 k-1)-w}+\frac{\beta(6 k+1)}{\beta(6 k+1)-w}\right\} \\
& -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left\{\frac{\sin \left(\frac{2 m \pi \beta(6 k-1)}{\beta(6 k-1)-w}\right)+\sin \left(\frac{2 m \pi \beta(6 k+1)}{\beta(6 k+1)-w}\right)}{m}\right\} \\
& =2 n+2-\frac{2}{3} \sum_{k=1}^{n}\left\{\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}+\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right\} \\
& -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left\{\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)+\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right\} \\
& =2+\frac{2 n}{3}-\frac{2}{3} \sum_{k=1}^{n}\left(\frac{1}{\pi \beta(6 k-1)-1}+\frac{1}{\pi \beta(6 k+1)-1}\right) \\
& -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)+\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right) \\
& =2+\frac{4 n}{3}-\frac{1}{3} \sum_{k=1}^{n}\left(\frac{\pi \beta(6 k-1)+1}{\pi \beta(6 k-1)-1}+\frac{\pi \beta(6 k+1)+1}{\pi \beta(6 k+1)-1}\right) \\
& -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)+\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right)
\end{aligned}
$$

Proof 4. If N is a prime number, then $1-\rho(N)=1$. If N is 1 or a composite number then

$$
1-\rho(N)=0 . \operatorname{So}, \pi(N)=\sum_{k=1}^{N}\{1-\rho(k)\}
$$

If $N=6 n+3$ then

$$
\pi(N)=\pi(6 n+3)
$$

$$
\begin{aligned}
& =\sum_{k=1}^{6 n+3}\{1-\rho(k)\}=\sum_{k=1}^{6 n+3} 1-\sum_{k=1}^{6 n+3} \rho(k)=6 n+3-\sum_{k=1}^{3} \rho(k)-\sum_{k=4}^{6 n+3} \rho(k) \\
& =6 n+3-\{\rho(1)+\rho(2)+\rho(3)\}
\end{aligned}
$$

$$
-\sum_{k=1}^{n}\{\rho(6 k-2)+\rho(6 k-1)+\rho(6 k+0)+\rho(6 k+1)+\rho(6 k+2)+\rho(6 k+3)\}
$$

$\rho(1)=1$ and 2,3 is prime so $\rho(2)=0, \rho(3)=0$ and
$6 k-2,6 k+0,6 k+2,6 k+3$ is composite because the multiple of 2 or 3, so,
$\rho(6 k-2)=1, \rho(6 k+0)=1, \rho(6 k+2)=1, \rho(6 k+3)=1$. Therefore,
$\pi(N)=\pi(6 n+3)$
$=6 n+3-\{1+0+0\}-\left\{\sum_{k=1}^{n} 1+\sum_{k=1}^{n} \rho(6 k-1)+\sum_{k=1}^{n} 1+\sum_{k=1}^{n} \rho(6 k+1)+\sum_{k=1}^{n} 1+\sum_{k=1}^{n} 1\right\}$
$=6 n+3-\{1\}-\left\{4 n+\sum_{k=1}^{n} \rho(6 k-1)+\sum_{k=1}^{n} \rho(6 k+1)\right\}$
$=2 n+2-\left\{\sum_{k=1}^{n} \rho(6 k-1)+\sum_{k=1}^{n} \rho(6 k+1)\right\}$
Therefore, $\pi(6 n+3)=2 n+2-\left\{\sum_{k=1}^{n} \rho(6 k-1)+\sum_{k=1}^{n} \rho(6 k+1)\right\}$
And, $\pi(6 n+1)=\pi(6 n+3)-\{1-\rho(6 n+2)\}-\{1-\rho(6 n+3)\}=\pi(6 n+3)$
$\pi(6 n+2)=\pi(6 n+3)-\{1-\rho(6 n+3)\}=\pi(6 n+3)$
$\pi(6 n+4)=\pi(6 n+3)+\{1-\rho(6 n+4)\}=\pi(6 n+3)$

Now, let us define $\mathbb{P}_{=}$as a set of prime of $6 k-1$ type, \mathbb{P}_{+}as a set of prime of $6 k+1$ type, \mathbb{C}_{-}as a set of composite of $6 k-1$ type, \mathbb{C}_{+}as a set of prime of $6 k+1$ type, and let us define $A=\frac{\beta(6 k-1)}{\beta(6 k-1)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi \beta(6 k-1)}{\beta(6 k-1)-w}\right)}{m}$,
$B=\frac{\beta(6 k+1)}{\beta(6 k+1)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi \beta(6 k+1)}{\beta(6 k+1)-w}\right)}{m}$
According to theorem 3,
if $6 k-1 \in \mathbb{C}_{-}$then $\rho(6 k-1)=A$, if $6 k-1 \in \mathbb{P}_{-}$then $\rho(6 k-1)=A+\frac{1}{2}$,
if $6 k+1 \in \mathbb{C}_{\psi}$ then $\rho(6 k+1)=B$, if $6 k+1 \in \mathbb{P}_{+}$then $\rho(6 k+1)=B+\frac{1}{2}$, and,
let us express $\sum_{\mathbb{Z}}^{n} u(k)$ with the sum of $u(k)$, only if $u(k) \in \mathbb{Z}$ in $1 \leq k \leq n$ for a certain $u(k), \mathbb{Z}$ because $\mathbb{C}_{-} \cap \mathbb{P}_{-}=\emptyset, \mathbb{C}_{+} \cap \mathbb{P}_{+}=\emptyset$, so,

$$
\begin{aligned}
& \sum_{k=1}^{n} \rho(6 k-1)=\sum_{\mathbb{C}_{-}}^{n} \rho(6 k-1)+\sum_{\mathbb{P}_{-}}^{n} \rho(6 k-1) \\
& \sum_{k=1}^{n} \rho(6 k+1)=\sum_{\mathbb{C}_{+}}^{n} \rho(6 k+1)+\sum_{\mathbb{P}_{+}}^{n} \rho(6 k+1)
\end{aligned}
$$

So, if we apply the above contents to (4.1) then

$$
\begin{align*}
\pi(N) & =2 n+2-\left\{\sum_{C_{\infty}}^{n} \rho(6 k-1)+\sum_{\mathbb{P}_{\sigma}}^{n} \rho(6 k-1)+\sum_{\mathbb{C}_{+}}^{n} \rho(6 k+1)+\sum_{\mathbb{P}_{+\rightarrow}}^{n} \rho(6 k+1)\right\} \\
& =2 n+2-\left\{\sum_{\mathbb{C}_{-}}^{n} A+\sum_{\mathbb{P}_{-}}^{n}\left(A+\frac{1}{2}\right)+\sum_{\mathbb{C}_{+}}^{n} B+\sum_{\mathbb{P}_{\phi}}^{n}\left(B+\frac{1}{2}\right)\right\} \\
& =2 n+2-\left\{\sum_{\mathbb{C}_{-}}^{n} A+\sum_{\mathbb{P}_{-}}^{n} A+\sum_{\mathbb{P}_{-}}^{n} \frac{1}{2}+\sum_{\mathbb{C}_{+}}^{n} B+\sum_{\mathbb{P}_{+}}^{n} B+\sum_{\mathbb{P}_{\phi}}^{n} \frac{1}{2}\right\} \\
& =2 n+2-\left\{\sum_{\mathbb{C}_{-}}^{n} A+\sum_{\mathbb{P}_{-}}^{n} A+\sum_{\mathbb{C}_{+}}^{n} B+\sum_{\mathbb{P}_{+}}^{n} B+\sum_{\mathbb{P}_{-}}^{n} \frac{1}{2}+\sum_{\mathbb{P}_{+}}^{n} \frac{1}{2}\right\} \tag{4.2}
\end{align*}
$$

$\sum_{C_{-}}^{n} A+\sum_{\mathbb{P}_{-}}^{n} A=\sum_{k=1}^{n} A, \sum_{\mathbb{C}_{+}}^{n} B+\sum_{\mathbb{P}_{\psi}}^{n} B=\sum_{k=1}^{n} B$,
so, if we apply this to (4.2) then

$$
\begin{equation*}
\pi(N)=2 n+2-\left\{\sum_{k=1}^{n} A+\sum_{k=1}^{n} B+\sum_{\mathbb{P}_{-}}^{n} \frac{1}{2}+\sum_{\mathbb{P}_{+}}^{n} \frac{1}{2}\right\} . \tag{4.3}
\end{equation*}
$$

If we define $\pi_{-}(N)$ as the number of $6 n-1$ type prime number of N or less,
$\pi_{+}(N)$ as the number of $6 n+1$ type prime number of N or less then
$\pi(N)=2+\pi_{-}(N)+\pi_{+}(N)$ because all prime is $6 n-1$ or $6 n+1$ type except 2,3 and
$\sum_{\mathbb{P}_{-}}^{n} \frac{1}{2}=\frac{1}{2} \sum_{\mathbb{P}_{-}}^{n} 1=\frac{\pi_{-}(N)}{2}, \sum_{\mathbb{P}_{\phi}}^{n} \frac{1}{2}=\frac{1}{2} \sum_{\mathbb{P}_{\phi}}^{n} 1=\frac{\pi_{+}(N)}{2}$
,so,if we apply this to (4.3) then

$$
\begin{align*}
\pi(N)=2 n+2 & -\left\{\sum_{k=1}^{n} A+\sum_{k=1}^{n} B+\frac{\pi_{-}(N)}{2}+\frac{\pi_{+}(N)}{2}\right\} \\
& =2 n+2-\left\{\sum_{k=1}^{n} A+\sum_{k=1}^{n} B+\frac{\pi(N)-2}{2}\right\} \tag{4.4}
\end{align*}
$$

If we arrange (4.4) then

$$
\begin{gather*}
\pi(N)+\frac{\pi(N)-2}{2}=2 n+2-\left\{\sum_{k=1}^{n} A+\sum_{k=1}^{n} B\right\} \rightarrow \frac{3 \pi(N)-2}{2}=2 n+2-\left\{\sum_{k=1}^{n} A+\sum_{k=1}^{n} B\right\} \rightarrow \\
\frac{3 \pi(N)}{2}=2 n+3-\left\{\sum_{k=1}^{n} A+\sum_{k=1}^{n} B\right\} \rightarrow \pi(N)=\frac{2}{3}\left\{2 n+3-\left\{\sum_{k=1}^{n} A+\sum_{k=1}^{n} B\right\}\right\} \rightarrow \\
\pi(N)=2+\frac{4 n}{3}-\frac{2}{3}\left\{\sum_{k=1}^{n} A+\sum_{k=1}^{n} B\right\}-\cdots-\cdots----(4.5) \tag{4.5}
\end{gather*}
$$

If we substitute A, B to (4.5) then

$$
\begin{align*}
\pi(N)=2+\frac{4 n}{3} & -\frac{2}{3}\left\{\sum_{k=1}^{n}\left(\frac{\beta(6 k-1)}{\beta(6 k-1)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi \beta(6 k-1)}{\beta(6 k-1)-w}\right)}{m}\right)\right. \\
& \left.+\sum_{k=1}^{n}\left(\frac{\beta(6 k+1)}{\beta(6 k+1)-w}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi \beta(6 k+1)}{\beta(6 k+1)-w}\right)}{m}\right)\right\} \\
=2+\frac{4 n}{3} & +\frac{2 n}{3} \\
& -\frac{2}{3}\left\{\sum _ { k = 1 } ^ { n } \left(\frac{\beta(6 k-1)}{\beta(6 k-1)-w}+\frac{\beta(6 k+1)}{\beta(6 k+1)-w}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi \beta(6 k-1)}{\beta(6 k-1)-w}\right)}{m}\right.\right. \\
& \left.\left.+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi \beta(6 k+1)}{\beta(6 k+1)-w}\right)}{m}\right)\right\} \\
=2 n+2 & -\frac{2}{3} \sum_{k=1}^{n}\left(\frac{\beta(6 k-1)}{\beta(6 k-1)-w}+\frac{\beta(6 k+1)}{\beta(6 k+1)-w}\right) \\
& -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(\frac{\sin \left(\frac{2 m \pi \beta(6 k-1)}{\beta(6 k-1)-w}\right)+\sin \left(\frac{2 m \pi \beta(6 k+1)}{\beta(6 k+1)-w}\right)}{m}\right)----------(4 \tag{4.6}
\end{align*}
$$

If we substitute $w=\frac{1}{\pi}$ to (4.6) especially, then

$$
\begin{align*}
& \pi(N)=2 n+2-\frac{2}{3} \sum_{k=1}^{n}\left(\frac{\beta(6 k-1)}{\beta(6 k-1)-\frac{1}{\pi}}+\frac{\beta(6 k+1)}{\beta(6 k+1)-\frac{1}{\pi}}\right) \\
&-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(\frac{\sin \left(\frac{2 m \pi \beta(6 k-1)}{\beta(6 k-1)-\frac{1}{\pi}}\right)+\sin \left(\frac{2 m \pi \beta(6 k+1)}{\beta(6 k+1)-\frac{1}{\pi}}\right)}{m}\right) \\
&=2 n+2-\frac{2}{3} \sum_{k=1}^{n}\left(\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}+\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right) \\
&-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)+\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right) \tag{4.7}
\end{align*}
$$

And, if we modify (4.7) then

$$
\left.\begin{array}{rl}
\pi(N)=2 n+2- & -\frac{4 n}{3}+\frac{4 n}{3}-\frac{2}{3} \sum_{k=1}^{n}\left(\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}+\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right) \\
& -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)+\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right) \\
=2+\frac{2 n}{3}+\frac{2}{3} \sum_{k=1}^{n} 2-\frac{2}{3} \sum_{k=1}^{n}\left(\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}+\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right) \\
& -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)+\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right) \\
=2+\frac{2 n}{3}+\frac{2}{3} \sum_{k=1}^{n}\left(1-\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}+1-\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)
\end{array}\right)
$$

And, we modify (4.8) then

$$
\left.\begin{array}{rl}
\pi(N)=2+\frac{2 n}{3} & +\frac{2 n}{3}-\frac{2 n}{3}-\frac{2}{3} \sum_{k=1}^{n}\left(\frac{1}{\pi \beta(6 k-1)-1}+\frac{1}{\pi \beta(6 k+1)-1}\right) \\
& -\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)+\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right) \\
=2+\frac{4 n}{3}-\frac{1}{3} \sum_{k=1}^{n} 2-\frac{1}{3} \sum_{k=1}^{n}\left(\frac{2}{\pi \beta(6 k-1)-1}+\frac{2}{\pi \beta(6 k+1)-1}\right)
\end{array}\right)
$$

Theorem 5. Next prime of $6 \boldsymbol{n} \pm 1$ type

If we define $P=6 p+1$ as an arbitrary prime number of $6 n+1$ type and if we define $X=6 x+1$ as the first prime number of $6 n+1$ type after P, then, the following equation is satisfied.

$$
\begin{aligned}
x & =p+1+\sum_{k=p+1}^{x-1} \rho(6 k+1) \\
& =p+1+\frac{1}{2} \sum_{k=p+1}^{x-1} \frac{\pi \beta(6 k+1)+1}{\pi \beta(6 k+1)-1}+\frac{1}{\pi} \sum_{k=p+1}^{x-1} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m} \\
& =p+1+\sum_{k=p+1}^{x} \rho(6 k+1) \\
& =p+\frac{3}{2}+\frac{1}{2} \sum_{k=p+1}^{x} \frac{\pi \beta(6 k+1)+1}{\pi \beta(6 k+1)-1}+\frac{1}{\pi} \sum_{k=p+1}^{x} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}
\end{aligned}
$$

If we define $P=6 p-1$ as an arbitrary prime number of $6 n-1$ type and if we define $X=6 x-1$ as the first prime number of $6 n-1$ type after P, then, the following equation is satisfied..

$$
\begin{aligned}
x & =p+1+\sum_{k=p+1}^{x-1} \rho(6 k-1) \\
& =p+1+\frac{1}{2} \sum_{k=p+1}^{x-1} \frac{\pi \beta(6 k-1)+1}{\pi \beta(6 k-1)-1}+\frac{1}{\pi} \sum_{k=p+1}^{x-1} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m} \\
& =p+1+\sum_{k=p+1}^{x} \rho(6 k-1) \\
& =p+\frac{3}{2}+\frac{1}{2} \sum_{k=p+1}^{x} \frac{\pi \beta(6 k-1)+1}{\pi \beta(6 k-1)-1}+\frac{1}{\pi} \sum_{k=p+1}^{x} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}
\end{aligned}
$$

Proof 5. In the case of $P=6 p+1, X=6 x+1$,
let us define $P=6 p+1$ as an arbitrary prime number of $6 n+1$ type and let us define $X=6 x+1$ as the first prime number of $6 n+1$ type after P. $\rho(6 k+1)=1$ because $6 k+1$ is a composite number in $p<k<x$ and $\rho(6 x+1)=0$ because $6 x+1$ is a prime number. Therefore,

$$
\begin{aligned}
x & =\sum_{k=1}^{x} 1=\sum_{k=1}^{p} 1+\sum_{k=p+1}^{x-1} 1+\sum_{k=x}^{x} 1+\sum_{k=x}^{x} 0=\sum_{k=1}^{p} 1+\sum_{k=x}^{x} 1+\sum_{k=p+1}^{x-1} 1+\sum_{k=x}^{x} 0 \\
& =p+1+\sum_{k=p+1}^{x-1} \rho(6 k+1)+0=p+1+\sum_{k=p+1}^{x-1} \rho(6 k+1)+\sum_{k=x}^{x} \rho(6 k+1) \\
& =p+1+\sum_{k=p+1}^{x} \rho(6 k+1)
\end{aligned}
$$

And,for $p<k<x, \rho(6 k+1)=\left[\frac{\beta(6 k+1)}{\beta(6 k+1)-w}\right], \quad 1<\frac{\beta(6 k+1)}{\beta(6 k+1)-w}<2$, that is, $\frac{\beta(6 k+1)}{\beta(6 k+1)-w} \in \overline{\mathbb{R}}$, so, according to theorem 3, if we arrange the above formula then

$$
\begin{aligned}
x & =p+1+\sum_{k=p+1}^{x-1} \rho(6 k+1) \\
& =p+1+\sum_{k=p+1}^{x-1}\left\{\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right\} \\
& =p+1+\sum_{k=p+1}^{x-1}\left\{\frac{2 \pi \beta(6 k+1)}{2(\pi \beta(6 k+1)-1)}-\frac{\pi \beta(6 k+1)-1}{2(\pi \beta(6 k+1)-1)}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right\} \\
& =p+1+\sum_{k=p+1}^{x-1}\left\{\frac{1}{2}\left(\frac{\pi \beta(6 k+1)+1}{\pi \beta(6 k+1)-1}\right)+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right\} \\
& =p+1+\frac{1}{2} \sum_{k=p+1}^{x-1} \frac{\pi \beta(6 k+1)+1}{\pi \beta(6 k+1)-1}+\frac{1}{\pi} \sum_{k=p+1}^{x-1} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m} \\
& =p+1+\sum_{k=p+1}^{x-1} \rho(6 k+1)+\sum_{k=x}^{x} 0=p+1+\sum_{k=p+1}^{x-1} \rho(6 k+1)+\sum_{k=x}^{x} \rho(6 k+1)
\end{aligned}
$$

$$
\begin{aligned}
& =p+1+\sum_{k=p+1}^{x-1} \rho(6 k+1)+\sum_{k=x}^{x}\left\{\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}+\frac{1}{2}\right\} \\
& =p+1+\sum_{k=p+1}^{x-1} \rho(6 k+1)+\sum_{k=x}^{x}\left\{\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}\right\}+\sum_{k=x}^{x} \frac{1}{2} \\
& =p+1+\sum_{k=p+1}^{x}\left\{\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1)}\right.}{m}\right\}+\frac{1}{2} \\
& =p+\frac{3}{2}+\frac{1}{2} \sum_{k=p+1}^{x} \frac{\pi \beta(6 k+1)+1}{\pi \beta(6 k+1)-1}+\frac{1}{\pi} \sum_{k=p+1}^{x} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}
\end{aligned}
$$

In the case of $P=6 p-1, X=6 x-1$,
let us define $P=6 p-1$ as an arbitrary prime number of $6 n-1$ type and let us define $X=6 x-1$ as the first prime number of $6 n-1$ type after P.
$\rho(6 k-1)=1$ because $6 k-1$ is a composite number in $p<k<x$ and $\rho(6 x-1)=0$ because $6 x-1$ is a prime number. Therefore,

$$
\begin{aligned}
x & =\sum_{k=1}^{x} 1=\sum_{k=1}^{p} 1+\sum_{k=p+1}^{x-1} 1+\sum_{k=x}^{x} 1+\sum_{k=x}^{x} 0=\sum_{k=1}^{p} 1+\sum_{k=x}^{x} 1+\sum_{k=p+1}^{x-1} 1+\sum_{k=x}^{x} 0 \\
& =p+1+\sum_{k=p+1}^{x-1} \rho(6 k-1)+0=p+1+\sum_{k=p+1}^{x-1} \rho(6 k-1)+\sum_{k=x}^{x} \rho(6 k-1) \\
& =p+1+\sum_{k=p+1}^{x} \rho(6 k-1)
\end{aligned}
$$

And,for $p<k<x, \rho(6 k-1)=\left[\frac{\beta(6 k-1)}{\beta(6 k-1)-w}\right], \quad 1<\frac{\beta(6 k-1)}{\beta(6 k-1)-w}<2$,that is, $\frac{\beta(6 k-1)}{\beta(6 k-1)-w} \in \overline{\mathbb{R}}$, so,according to theorem 3 .

$$
\begin{aligned}
x & =p+1+\sum_{k=p+1}^{x-1} \rho(6 k-1) \\
& =p+1+\sum_{k=p+1}^{x-1}\left\{\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =p+1+\sum_{k=p+1}^{x-1}\left\{\frac{2 \pi \beta(6 k-1)}{2(\pi \beta(6 k-1)-1)}-\frac{\pi \beta(6 k-1)-1}{2(\pi \beta(6 k-1)-1)}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}\right\} \\
& =p+1+\sum_{k=p+1}^{x-1}\left\{\frac{1}{2}\left(\frac{\pi \beta(6 k-1)+1}{\pi \beta(6 k-1)-1}\right)+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}\right\} \\
& =p+1+\frac{1}{2} \sum_{k=p+1}^{x-1} \frac{\pi \beta(6 k-1)+1}{\pi \beta(6 k-1)-1}+\frac{1}{\pi} \sum_{k=p+1}^{x-1} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m} \\
& =p+1+\sum_{k=p+1}^{x-1} \rho(6 k-1)+\sum_{k=x}^{x} 0=p+1+\sum_{k=p+1}^{x-1} \rho(6 k-1)+\sum_{k=x}^{x} \rho(6 k-1) \\
& =p+1+\sum_{k=p+1}^{x-1} \rho(6 k-1)+\sum_{k=x}^{x}\left\{\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}+\frac{1}{2}\right\} \\
& =p+1+\sum_{k=p+1}^{x-1} \rho(6 k-1)+\sum_{k=x}^{x}\left\{\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}\right\}+\sum_{k=x}^{x} \frac{1}{2} \\
& =p+1+\sum_{k=p+1}^{x}\left\{\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}-\frac{1}{2}+\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}\right\}+\frac{1}{2} \\
& =p+\frac{3}{2}+\frac{1}{2} \sum_{k=p+1}^{x} \frac{\pi \beta(6 k-1)+1}{\pi \beta(6 k-1)-1}+\frac{1}{\pi} \sum_{k=p+1}^{x} \sum_{m=1}^{\infty} \frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}
\end{aligned}
$$

Theorem 6.

The below formula is not finished but we write here, because we think that if we arrange this formula more then it would be useful.
If $1 \leq \beta(6 k-1) \leq u, 1 \leq \beta(6 k+1) \leq v, \operatorname{Max}(u, v)=M, T(k)=\left(\frac{2 \pi^{2} \beta(k)}{\pi \beta(k)-1}\right)$ then

$$
\begin{aligned}
\lim _{N \rightarrow \infty}\left(\frac { \pi } { 2 } \left(\frac{N+3}{3}\right.\right. & \left.\left.-\frac{N}{\ln N}\right)\left(\frac{\pi-3}{\pi-1}\right)\right) \\
& \leq \sum_{k=1}^{\infty}\left(T(6 k-1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k-1)}{m T(6 k-1)}\right)\right) \\
& +\sum_{k=1}^{\infty}\left(T(6 k+1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k+1)}{m T(6 k+1)}\right)\right) \leq \lim _{N \rightarrow \infty}\left(\frac{\pi}{2}\left(\frac{N+3}{3}-\frac{N}{\ln N}\right)\right)
\end{aligned}
$$

Proof 6.

Let us define below contents to simplify the formula of theorem 4 .

$$
\begin{gathered}
b_{-}=\frac{\pi \beta(6 k-1)}{\pi \beta(6 k-1)-1}, b_{+}=\frac{\pi \beta(6 k+1)}{\pi \beta(6 k+1)-1} \\
s_{-}=\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}, s_{+}=\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}
\end{gathered}
$$

If we apply the above definition to theorem 4 then

$$
\begin{equation*}
\pi(N=6 n+3)=2 n+2-\frac{2}{3} \sum_{k=1}^{n}\left(b_{-}+b_{+}\right)-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right)- \tag{6.1}
\end{equation*}
$$

Let us define $\mathbb{P}_{=}$as a set of prime of $6 k-1$ type, \mathbb{P}_{+}as a set of prime of $6 k+1$ type, \mathbb{C}_{-}as a set of composite of $6 k-1$ type, \mathbb{C}_{+}as a set of prime of $6 k+1$ type. If $6 k-1 \in \mathbb{P}_{-}$then $\beta(6 k-1)=0$ so $b_{-}=0$, if $6 k+1 \in \mathbb{P}_{+}$then $\beta(6 k+1)=0$ so $b_{+}=0$ and $\mathbb{C}_{-} \cap \mathbb{P}_{=}=\emptyset, \mathbb{C}_{+} \cap \mathbb{P}_{+}=\emptyset$. If we express (6.1) again according to the above contents then

$$
\begin{align*}
\pi(N=6 n+3) & =2 n+2-\frac{2}{3}\left(\sum_{C_{-}}^{n} b_{-}+\sum_{\mathbb{P}_{-}}^{n} b_{-}+\sum_{\mathbb{C}_{+}}^{n} b_{+}+\sum_{\mathbb{P}_{+}}^{n} b_{+}\right)-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right) \\
& =2 n+2-\frac{2}{3}\left(\sum_{C_{-}}^{n} b_{-}+\sum_{C_{+}}^{n} b_{+}\right)-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right)-\cdots-\cdots-----(6.2) \tag{6.2}
\end{align*}
$$

If $1 \leq \beta(6 k-1) \leq u, 1 \leq \beta(6 k+1) \leq v$ then

$$
\frac{\pi}{\pi-1}-\frac{\pi u}{\pi u-1}=\frac{\pi \pi u-\pi-\pi \pi u+\pi u}{(\pi-1)(\pi u-1)}=\frac{\pi u-\pi}{(\pi-1)(\pi u-1)} \geq 0 \rightarrow \frac{\pi}{\pi-1} \geq \frac{\pi u}{\pi u-1}
$$

If $\operatorname{Max}(u, v)=M$ then

$$
\begin{array}{r}
\frac{\pi u}{\pi u-1}-\frac{\pi M}{\pi M-1}=\frac{\pi M-\pi u}{(\pi u-1)(\pi M-1)} \geq 0 \rightarrow \frac{\pi u}{\pi u-1} \geq \frac{\pi M}{\pi M-1} \rightarrow \\
\frac{\pi M}{\pi M-1} \leq \frac{\pi u}{\pi u-1} \leq b_{-} \leq \frac{\pi}{\pi-1}, \quad \frac{\pi M}{\pi M-1} \leq \frac{\pi v}{\pi v-1} \leq b_{+} \leq \frac{\pi}{\pi-1} \tag{6.3}
\end{array}
$$

If we define $\pi_{-}(N)$ as the number of $6 n-1$ type prime number of N or less, $\pi_{+}(N)$ as the number of $6 n+1$ type prime number of N or less then

$$
\begin{equation*}
\sum_{\mathbb{C}_{-}}^{n} 1=n-\pi_{-}(N), \sum_{\mathbb{C}_{+}}^{n} 1=n-\pi_{+}(N) \tag{6.4}
\end{equation*}
$$

If we apply (6.3), (6.4) for using (6.2) then

$$
\begin{gathered}
\frac{2}{3}\left(\sum_{\mathbb{C}_{-}}^{n} \frac{\pi M}{\pi M-1}+\sum_{\mathbb{C}_{+}}^{n} \frac{\pi M}{\pi M-1}\right) \leq \frac{2}{3}\left(\sum_{\mathbb{C}_{-}}^{n} b_{-}+\sum_{\mathbb{C}_{+}}^{n} b_{+}\right) \leq \frac{2}{3}\left(\sum_{\mathbb{C}_{-}}^{n} \frac{\pi}{\pi-1}+\sum_{\mathbb{C}_{+}}^{n} \frac{\pi}{\pi-1}\right) \rightarrow \\
\frac{2}{3}\left(\frac{\pi M}{\pi M-1} \sum_{\mathbb{C}_{-}}^{n} 1+\frac{\pi M}{\pi M-1} \sum_{\mathbb{C}_{+}}^{n} 1\right) \leq \frac{2}{3}\left(\sum_{\mathbb{C}_{-}}^{n} b_{-}+\sum_{\mathbb{C}_{+}}^{n} b_{+}\right) \leq \frac{2}{3}\left(\frac{\pi}{\pi-1} \sum_{\mathbb{C}_{-}}^{n} 1+\frac{\pi}{\pi-1} \sum_{\mathbb{C}_{+}}^{n} 1\right) \rightarrow \\
\frac{2}{3}\left(\frac{\pi M}{\pi M-1}\right)\left(2 n-\pi_{-}(N)-\pi_{+}(N)\right) \leq \frac{2}{3}\left(\sum_{\mathbb{C}_{-}}^{n} b_{-}+\sum_{\mathbb{C}_{+}}^{n} b_{+}\right) \leq \frac{2}{3}\left(\frac{\pi}{\pi-1}\right)\left(2 n-\pi_{-}(N)-\pi_{+}(N)\right)
\end{gathered}
$$

$\pi(N)=2+\pi_{-}(N)+\pi_{+}(N)$ because all prime is $6 n-1$ or $6 n+1$ type except 2,3 .
If we apply this contents to the above formula and apply (6.1) then

$$
\begin{aligned}
& \frac{2}{3}\left(\frac{\pi M}{\pi M-1}\right)(2 n+2-\pi(N)) \leq \frac{2}{3}\left(\sum_{C_{-}}^{n} b_{-}+\sum_{C_{+}}^{n} b_{+}\right) \leq \frac{2}{3}\left(\frac{\pi}{\pi-1}\right)(2 n+2-\pi(N)) \rightarrow \\
& \frac{2}{3}\left(\frac{\pi M}{\pi M-1}\right)(2 n+2-\pi(N)) \leq 2 n+2-\pi(N=6 n+3)-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right) \\
& \leq \frac{2}{3}\left(\frac{\pi}{\pi-1}\right)(2 n+2-\pi(N)) \rightarrow \\
& \frac{2}{3}\left(\frac{\pi M}{\pi M-1}\right)(2 n+2-\pi(N))-(2 n+2-\pi(N)) \leq-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right) \\
& \leq \frac{2}{3}\left(\frac{\pi}{\pi-1}\right)(2 n+2-\pi(N))-(2 n+2-\pi(N)) \rightarrow
\end{aligned}
$$

$$
\begin{align*}
& (2 n+2-\pi(N))\left(\frac{2 \pi M}{3(\pi M-1)}-1\right) \leq-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right) \leq(2 n+2-\pi(N))\left(\frac{2 \pi}{3(\pi-1)}-1\right) \\
& \quad \rightarrow \\
& \frac{1}{3}(2 n+2-\pi(N))\left(\frac{-\pi M+3}{\pi M-1}\right) \leq-\frac{2}{3 \pi} \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right) \leq \frac{1}{3}(2 n+2-\pi(N))\left(\frac{-\pi+3}{\pi-1}\right) \rightarrow \tag{6.5}\\
& \frac{\pi}{2}(2 n+2-\pi(N))\left(\frac{\pi-3}{\pi-1}\right) \leq \sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right) \leq \frac{\pi}{2}(2 n+2-\pi(N))\left(\frac{\pi M-3}{\pi M-1}\right)-----------(6.5) \\
& \text { If } T(k)=\left(\frac{2 \pi^{2} \beta(k)}{\pi \beta(k)-1}\right) \text { then }
\end{align*}
$$

$$
\begin{aligned}
& s_{-}=\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k-1)}{\pi \beta(6 k-1)-1}\right)}{m}=\frac{\sin (m T(6 k-1))}{m T(6 k-1)} T(6 k-1) \\
& s_{+}=\frac{\sin \left(\frac{2 m \pi^{2} \beta(6 k+1)}{\pi \beta(6 k+1)-1}\right)}{m}=\frac{\sin (m T(6 k+1))}{m T(6 k+1)} T(6 k+1)
\end{aligned}
$$

So,

$$
\begin{aligned}
\sum_{k=1}^{n} \sum_{m=1}^{\infty}\left(s_{-}+s_{+}\right) & \\
& =\sum_{k=1}^{n}\left(T(6 k-1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k-1)}{m T(6 k-1)}\right)\right) \\
& +\sum_{k=1}^{n}\left(T(6 k+1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k+1)}{m T(6 k+1)}\right)\right)
\end{aligned}
$$

If we apply the above contents to (6.5) then

$$
\begin{aligned}
& \frac{\pi}{2}(2 n+2-\pi(N))\left(\frac{\pi-3}{\pi-1}\right) \\
& \quad \leq \sum_{k=1}^{n}\left(T(6 k-1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k-1)}{m T(6 k-1)}\right)\right) \\
& \quad+\sum_{k=1}^{n}\left(T(6 k+1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k+1)}{m T(6 k+1)}\right)\right) \leq \frac{\pi}{2}(2 n+2-\pi(N))\left(\frac{\pi M-3}{\pi M-1}\right)
\end{aligned}
$$

If we apply $\lim _{n \rightarrow \infty}$ to both sides of the above formula then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\frac{\pi}{2}(2 n+2\right. & \left.-\pi(N))\left(\frac{\pi-3}{\pi-1}\right)\right) \\
\leq & \lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n}\left(T(6 k-1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k-1)}{m T(6 k-1)}\right)\right)\right. \\
+ & \left.\sum_{k=1}^{n}\left(T(6 k+1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k+1)}{m T(6 k+1)}\right)\right)\right) \\
\leq & \lim _{n \rightarrow \infty}\left(\frac{\pi}{2}(2 n+2-\pi(N))\left(\frac{\pi M-3}{\pi M-1}\right)\right) \rightarrow \\
\lim _{n \rightarrow \infty}\left(\frac{\pi}{2}(2 n+2\right. & \left.-\pi(N))\left(\frac{\pi-3}{\pi-1}\right)\right) \\
& \leq \sum_{k=1}^{\infty}\left(T(6 k-1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k-1)}{m T(6 k-1)}\right)\right) \\
& +\sum_{k=1}^{\infty}\left(T(6 k+1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k+1)}{m T(6 k+1)}\right)\right) \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{\pi}{2}(2 n+2-\pi(N))\left(1-\frac{2}{\pi M-1}\right)\right)
\end{aligned}
$$

$$
N=6 n+3 \rightarrow 2 n+2=\frac{N+3}{3}, \lim _{n \rightarrow \infty} \frac{2}{\pi M-1}=0 \text { and }
$$

if we apply prime number theory (PNT) [1] to the above formula then

$$
\begin{aligned}
\lim _{N \rightarrow \infty}\left(\frac { \pi } { 2 } \left(\frac{N+3}{3}\right.\right. & \left.\left.-\frac{N}{\ln N}\right)\left(\frac{\pi-3}{\pi-1}\right)\right) \\
& \leq \sum_{k=1}^{\infty}\left(T(6 k-1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k-1)}{m T(6 k-1)}\right)\right) \\
& +\sum_{k=1}^{\infty}\left(T(6 k+1) \sum_{m=1}^{\infty}\left(\frac{\sin (m T(6 k+1)}{m T(6 k+1)}\right)\right) \leq \lim _{N \rightarrow \infty}\left(\frac{\pi}{2}\left(\frac{N+3}{3}-\frac{N}{\ln N}\right)\right)
\end{aligned}
$$

References

[1] Kim Ung Tae, Park Sung Ahn, Number Theory 7 'th, KyungMoon(2007), pp44.
(This is Korean book. I translate, sorry. Original book is 김응태, 박승안 공저, 정수론 제 7 판, 경문사(2007))
[2] Oh Jung Whan, Lee Jun Bok, Number Theory, KyoWoo(1999).
(This is Korean book. I translate, sorry . Original book is 오정환, 이준복 공저, 정수론, 교우사(1999))
[3] wikipedia, floor functions, http://ko.wikipedia.org/wiki/\�\�\�\�\�\�_\�\�\�\�\�\�
[4] wikipedia, Trigonometric functions, http://ko.wikipedia.org/wiki/\�\�\�\�\�\�\�\�\�\�\�\�
[5] wikipedia, Trigonometric functions identical equation, http://ko.wikipedia.org/wiki/\�\�\�\�\�\�\�\�\�\�\�\�_\�\% 95\%AD\%EB\%93\%B1\%EC\%8B\%9D\#.EB.91.90.EB.B0.B0.EA.B0.81_.EA.B3.B5.EC.8B.9D

Oh Jung Uk, South Korea (I am not in any institutions of mathematics)
E-mail address: ojumath @ gmail.com

