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Abstract

In May 2014 I published a paper entitled Scale Factors and the Scale Principle (The Scale 
Law) where I suggested that all laws of physics obey the Scale Law. This paper provides the 
derivation of the Lorentz transformations and shows that these transformations obey the 
Scale Law. The relevance of this paper is that it shows that when all the necessary informa-
tion about a given phenomenon is known (including assumptions or postulates), the Scale 
Law can be used to derived the exact law that governs that phenomenon.
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1. Introduction

The Lorentz transformations were derived before Einstein’s theory of special relativity by the
Dutch physicist Hendrix Lorentz and they are in agreement with Einstein’s theory. The 
transformations are equations that relate the measurements of space and time carried out by 
two observers which move at a constant velocity with respect to the other.

2. The Scale Principle or Scale Law (Summary)

The following table summarizes two forms of the Scale Law: the Meta form and the explicit 
form
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(1)

(1a) Meta Form
(Meta Quantities)

(1b) Explicit Form
(ratio, exponents and scale

factor)

21 MSM ℜ

1M = dimensionless Meta Quantity 1

2M = dimensionless Meta Quantity 2

S = dimensionless Meta scale factor

ℜ = Meta Relationship Type 
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(See details below)

The above symbols stand for

a) Quantities: 
(i) 1Q , 2Q , 3Q  and 4Q are physical quantities of identical dimension (such as 
Length, Time, Mass, Temperature, etc), or 
ii) 1Q  and 2Q  are  physical quantities of dimension 1 or dimensionless constants 

while 3Q  and 4Q  are physical quantities of dimension 2 or dimensionless 

constants. However, if 1Q  and 2Q  are dimensionless constants then 3Q  and 4Q  
must have dimensions and viceversa.
 (e.g.: 1Q  and 2Q could be quantities of Mass while 3Q and 4Q  could be quantities 
of Length). 
The physical quantities can be variables (including differentials, derivatives, 
Laplacians, divergence, integrals, etc.), constants, dimensionless constants, any 
mathematical operation between the previous quantities, etc.

b) Relationship type: The relationship is one of five possibilities: less than or equal to 
inequation ( ≤ ), or less than inequation (<), or equal to - equation (=), or a greater 
than or equal to inequation ( ≥ ), or a greater than inequation (>). 

c) Scale factor: S is a dimensionless scale factor. This factor could be a real number, a 
complex number, a real function or a complex function (strictly speaking real 
numbers are a particular case of complex numbers). The scale factor could have more
than one value for the same relationship. In other words a scale factor can be a 
quantum number. There must be one and only one scale factor per equation.

d) Exponents: n and m are integer exponents: 0, 1, 2, 3, …
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Meta Law: 
Scale Principle or Scale Law



Some examples are:
example 1: n = 0 and m = 1; 
example 2: n = 0 and m = 2; 
example 3: n = 1 and m = 0; 
example 4: n = 1 and m = 1; (canonical form)
example 5: n = 1 and m = 2;   
example 6: n = 2 and m = 0; 
example 7: n = 2 and m = 1;
It is worthy to remark that:
i) The exponents, n and m, cannot be both zero in the same relationship.
ii) The number n is the exponent of both 1Q  and 2Q while the number m is the 

exponent of  both 3Q  and 4Q  regardless on how we express the equation or 
inequation (1c). This means that the exponents will not change when we express the 
relationship in a mathematically equivalent form such as
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iii) So far these integers are less than 3. However we leave the options 
open as we don’t know whether we shall find higher exponents in the future.   
iv) When both exponents, n and m, are equal to one, then we say that the equation 
is in its canonical form. Whenever we express a particular law of physics in the 
form of the Scale Law, we should use its canonical form, if possible.

It seems the Scale Law can describe all the laws of physics. References [1] and [2] provide a 
more complete explanation on the Scale Law. 

3. Derivation of the Lorentz Transformations

From the Scale Law we shall derive the following Lorentz’s transformation’s equations

3.1) Space transformations
 x’ = f(x,  t) Direct transformation
 x  = f(x’, t’) Reverse transformation

3.2) Time Transformations
  t’ = f(x,  t) Direct transformation
  t  = f(x’, t’) Reverse transformation

3.1 Space Transformations

The data we have is what we call “all the necessary information” for this particular case:

i) the Galilean transformations, and 
ii) For low speeds, the Lorentz transformations (the transformation we are 

looking for) have to yield the Galilean transformation, and 
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iii) Einstein’s postulate: “Any ray of light moves in the “stationary” system of co-
ordinates with the determined velocity c, whether the ray is emitted by a 
stationary or by a moving body” [3].

This information is necessary and sufficient to find the Lorentz transformation through the 
Scale Law. Let us see how.

Let us imagine two Cartesian coordinate systems: the x, y, z, t reference system (or system 
A); and the x’, y’, z’, t’ reference system (or system B). . We assume that reference system B 
moves with respect to system A at a constant speed denoted by v towards the direction of the 
the positive x-axis. We also imagine that we have a body (called X) moving along the x axis 
at constant speed. An observer from system A measures the speed of this body as xw , while 

an observer from system B measures '
xw  for the same body. The body can also be a ray of 

light or photon.

We don’t need the scale table in this specific case because the transformations’ equations are 
mathematically very simple (but not necessarily the physical concepts behind them). Thus, 
according to the Scale Law, and assuming that system B moves in the direction of the 
positive x-axis of system A, we can write

S
vtx

x =
−

'
(Assumption) (2)

Where S is a dimensionless scale factor whose value we intend to derive.
The corresponding equation for the x co-ordinate of the inverse transformation is

S
vtx

x =
+ ''

(Assumption) (3)

It is worthy to remark the minus sign of the denominator of equation (2) was replaced by a 
plus sign in equation (3) to account for the fact that, for an observer from system B, system A
moves towards the direction of the negative x’-axis of system B . We can write the above 
relationship as follows

( )vtxSx −=' (4)

( )'' vtxSx += (5)

To find the expression for the scale factor we start from equation (4) where we substitute x 
with the second side of equation (5), this gives

( )[ ]'vtvtxSSx +−= (6)

Solving for t’
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( ) 'vtvtxS
S

x +−= (7)
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Now we differentiate with respect to time t 
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dt
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1
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2 (10)

But dx/dt is the velocity wx of a body X with respect to the system A

dt

dx
wx ≡ (11)

Thus equation (12) can be expressed as












 −+=

v

w

S
S

dt

dt x1
1

1
'

2 (12)

Now we differentiate equation (4) with respect to t’ 

'''

'

dt

dt
Sv

dt

dx
S

dt

dx −= (13)

Now we multiply the first term of the second side by dt/dt

'''

'

dt

dt
Sv

dt

dt

dt

dx
S

dt

dx −= (14)

But the velocity of the body X with respect to system B is '
xw , which is given by

'

''

dt

dx
wx ≡ (15)

Thus substituting dx’/dt’ and dx/dt in equation (14) with the second side of equations (11) 
and (15), respectively, yields
 

( )
'''

'

dt

dt
vwS

dt

dt
vS

dt

dt
wSw xxx −=−= (16)
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Now eliminating dt’/dt from equations (12) and (17)
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1
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x

xx

w

vw

v

w

S
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 −+ (19)

Now, we assume that body X is a photon. Then according to Einstein’s postulate (iii) an 
observer in system A and an observer in system B shall measure the same velocity, c, for the 
photon. Mathematically this is expressed as

cww xx == ' (20)

If we replace these two variables in equation (19) with the speed of light, c, we get

c

vc

v

c

S

−=




 −+ 1

1
1

2 (21)

We solve the above equation for S to obtain the equation for the scale factor, S(v)

2

2

1

1
)(

c

v
vS

−
=

(Scale factor for the Lorentz transformations) (22)

It is customary to denote the scale factor with γ (gamma). However. In the literature, there 
are no references as γ being the scale factor of the transformation in the sense I gave it here. 
Thus we found the scale factor for this transformation is a function of the speed, v, between 
the two reference systems. 

Substituting S in equations (2) and (3) with the value given by equation (22) we obtain the x’ 
coordinate and the x coordinate of the Lorentz transformations, respectively

2

2

1

1'

c

vtvx

x

−
=

− (x’ coordinate’s equation of the Lorentz transformations) (23)
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1

1

''

c

vvtx

x

−
=

+ (x coordinate’s equation of the Lorentz transformations) (24)

We can rewrite these equations, (24) and (25), in a more familiar way as follows

2

2

1

'

c

v

tvx
x

−

−=
(x’ coordinate’s equation of the Lorentz transformations) (25)

2

2

1

''

c

v

vtx
x

−

+=
(x coordinate’s equation of the Lorentz transformations) (26)

Thus I have proved that both the x’ coordinate equation and the x coordinate equation of the 
Lorentz transformations obey the Scale Law and I have also found the expression for the 
scale factor S. The Scale Law works perfectly well in this case because we have all the 
necessary information: i), ii) and iii) about the phenomenon under study.

3.2 Time Transformations

From equation (5) we can write

'' tvx
S

x += (27)

'' xtv
S

x =− (28)

Substituting x’ with the second side of equation (4) we get

( )vtxStv
S

x −=− ' (29)

Multiplying by S both sides we get

( )vtxStvSx −=− 2' (30)

( ) ( ) vtSxSxvtSxSxvtxStvS 22222 1' −−=−−=−−=− (31)

( ) xSvtStvS 1' 22 −−= (32)
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Dividing by the product S v both sides we get

( ) x
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S
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Now we work with the factor 
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If we replace S in the above equation by the value of S given by equation (22) we obtain
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Now equation (34) can be expressed as
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In accordance with the Scale Law we can write this equation as follows
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S

c

xv
t

t =
−

2

'
(t’ coordinate’s equation of the Lorentz transformations) (41)

Equation (41) can be written in a more familiar form as follows

t '
=

t−
v x

c2

√1−
v 2

c2

               (t’ coordinate’s equation of the Lorentz transformations) (42)

Similarly we could prove that

t=S (t '
+

v x '

c2 ) (43)

In accordance with the Scale Law we can write this equation as follows

S

c

xv
t

t =
+ 2

'
'

(t coordinate’s equation of the Lorentz transformations) (44)

Equation (43) can be written in a more familiar form as follows

2

2

2

1

'
'

c

v
c

xv
t

t

−

+
= (t coordinate’s equation of the Lorentz transformations) (45)

Thus the derivations of the time transformations are complete.
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4. Conclusions

This paper shows that the Lorentz transformations obey the Scale Law. More importantly, 
the scale factor for the transformations was found from the previous knowledge scientists 
had: a)  the Galilean transformations were known before the formulation of the theory of 
special relativity; b)  because of the experiments carried out by Michelson-Morley, the 
invariance of the speed of light was also known before Einstein formulated his theory.  

In summary, the following table shows the Lorentz transformations we derived in the 
previous sections

Transformation
Type

Lorentz transformations
according to the Scale Law

Lorentz transformations

Space 
transformations

2

2

1

1'

c

vtvx

x

−
=

−

yy ='
zz ='

2

2

1

'

c

v

tvx
x

−

−=

yy ='
zz ='

Time
transformation

2

2

2 1

1'

c

v
c

xv
t

t

−
=

− t '
=

t−
v x

c2

√1−
v 2

c2

Inverse space 
transformations

2

2

1

1

''

c

vtvx

x

−
=

+

'yy =
'zz =

2

2

1

''

c

v

tvx
x

−

+=

'yy =
'zz =

Inverse time 
transformation

2

2

2 1

1
'

'
c

v
c

xv
t

t

−
=

+
2

2

2

1

'
'

c

v
c

xv
t

t

−

+
=

Table 1: This table shows the Lorentz transformations
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By observing this table it seems that the Scale Law is just a different way of writing a natural
law such as the Lorentz transformations. However this is not the case for the following 
reasons:

a) The Scale Law is a Quantum Mechanical Formulation.

The Scale Law is a quantum mechanical formulation. Until recently special relativity was not
explained by any quantum mechanical model. However in 2014 I showed that the Einstein’s 
famous formula of equivalence of mass and energy: 

E=m c2

can be derived from the Heisenberg uncertainty relations [5], and also from the universal 
uncertainty relations [6]. This means that the special theory of relativity is a quantum 
mechanical theory “in disguise”. I recommend the interested reader to read first reference [5] 
and then reference [6].

b) In General the Fundamental Form of the Equation is Different to the Corresponding 
Normal Form.

For example when we apply the Scale Law to find the black hole entropy the corresponding 
equations turned out to be:

Fundamental form of the
law or constant according to
the Scale Law (dimensionless

equation)

How humans formulated
this law or constant

Black Hole
Entropy Formula 

B

BH

P k

S

L

R

π
1

2

2

= H
B

BH A
G

ck
S

4

3

=

Where 

R = black hole radius 

PL = Planck length

BHS = Berkenstein-Hawking’s black hole entropy

Bk = Boltzmann’s constant

Thus according to this Meta Law, the law for the black hole entropy is explained in terms of 
the two ratios: 22

PLR  and BBH kS  and a scale factor, 1/π (for the derivation of the formula 
see [4]). 
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The conclusion is that, in general, the fundamental form of the equation (in this case the 
equation shown on the second column of the above table) looks very different to the 
corresponding normal form (in this case the Berkenstein-Hawking formula, third column of 
the above table). It is only when we carry out simple algebraic steps that we discover that the 
two forms are identical. 

c) The Interpretation is Different. 

This new interpretation means that all laws of physics and the mysterious fine-structure 
constant were spawned by Meta Laws. In other words the laws of physics exist because of 
the existence of Meta Laws. 

History faced a similar situation in the past with respect to the Lorentz transformations. Both 
Lorentz and Einstein found the same transformations but they interpreted these 
transformations differently. Lorentz derived these transformations assuming a contraction of 
the objects that were moving through the ether, while Einstein derived the same 
transformations assuming that the speed of light was invariant. Because of this conceptual 
difference Einstein’s theory was a more general and profound formulation.

One interpretation is to think we have hundreds of natural laws with no connection 
whatsoever among them. On the other hand, the other interpretation is to consider that behind
these laws there is a common origin - a Meta Law - that unifies the laws of physics and 
provides a deeper understanding of nature. I think that the latter interpretation is the correct 
one.

The relevance of this paper is that it shows that when all the necessary information about a 
given phenomenon is known (including assumptions or postulates), the Scale Law can be 
used to derived the exact law that governs that phenomenon.
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