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Abstract

Context. A physical explanation for dark energy Λ is proposed by revisiting the subject of causality and
duality in cosmology. Duality is the observation that the density in local regions is increasing even as
the average density at non-local or cosmic scales is decreasing. “Local” means distances less than the
center-to-center spacing of galaxy clusters, Ri; “non-local” means distances greater than Ri.

Aims. It is argued that the Friedmann solution is causally incomplete by two parameters: Ri, (denoting
“inter-cluster” distance and twice the zero gravity radius RZG) and energy coupling η (0 < η < 1). Both
factors describe the dualistic nature of gravitational systems. The energy being coupled is the radiant
energy given off by the dense regions as they grow denser; the coupling is its conversion to gravitational
energy or the expansion of space beyond Ri as the cosmos grows less dense.

Method. The minimum number of causal inputs required to describe gravitational systems is considered
for both finite and infinite (cosmological) models.

Results. Modeling a dualistic gravitational system in general requires a minimum of four causal inputs,
including Ri and η, whereas the Friedmann solution sans Λ uses only two: density ρ and expansion rate H
(not including pressure, which is inconsequential). Because Ri and η otherwise do not appear in the
standard model, it is suggested that Λ represents them in the relationship Λ = η/Ri2. This requires η of the
order 10-6. Distance Ri is the dividing line between collapse and expansion in the dualistic model;
therefore, there is no critical density Ω. Acceleration of the expansion is expected.

Conclusions. The universe cannot be modeled gravitationally with fewer than four causal parameters. The
cosmological constant is the only place in the Friedmann solution for the parameters Ri and η to be
“hiding”; hence, the inference that Λ represents them. If so, local contraction is the cause of cosmic
expansion. To clarify the situation, a dualistic solution is needed to Einstein’s field equations for general
relativity that explicitly includes Ri and η, as described in the Conclusions section.
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1. INTRODUCTION
The discovery that the Hubble expansion is accelerating was not anticipated and forced the re-introduction
of Einstein’s cosmological constant Λ or dark energy into the standard model (Perlmutter et al. 1999; Riess
et al. 1998). Enigmatically, Λ appears only in cosmology. Dualistic models will be used to argue that a
term like Λ must be included, and Λ may in fact be this missing term.

Duality means a twofold nature, especially a contradictory one, as in the wave/particle duality of quantum
mechanics. With respect to gravity, it simply means that complex systems cannot be described monolithically
as either contracting or expanding. Both processes occur simultaneously and must be included in a
complete description.

Conventionally, the universe is considered to be a uniform fluid of density ρ. Here, the universe is divided
into a collection of clumping regions of mass M separated by a distance Ri from each other (Teerikorpi and
Chernin, 2012). Furthermore, the rate of collapse at distances less than Ri is measured not in terms of
distance but in terms of energy. This is done because energy is the only observable we have of local
collapse. Expansion, on the other hand, is observed directly as a rate of change, that is, dr/dt = Hr, where
H is Hubble’s constant.

2. CAUSAL PARAMETER METHOD
The inputs to a problem are theory invariant: the same orbital parameters are used to calculate the precession
of Mercury’s orbit whether it is done using Newtonian gravity or general relativity (GR). Therefore, the
cosmological model is analyzed in terms of causal inputs.

In addition to gravity’s attractive force, tidal, centripetal, radiant, thermodynamic, and electromagnetic
forces come into play in complex systems, causing some parts to contract while others expand. The
contracting and expanding parts generally interact, and a complete model must account for the interaction.
It is argued that the parameters Ri (the average distance between galaxy clusters) and η (the coupling
efficiency of local contraction to cosmic expansion) are required for a complex model to be minimally
complete. This is done by examining both a finite and an infinite dualistic system and concluding that at
least four parameters must be specified in order to obtain a unique solution. It is argued that the Friedmann
solution, without the cosmological constant (Λ = 0), effectively uses only two parameters, the density and
expansion rate.

2.1. Parameters in Finite Dualistic Systems
Note: In the discussion of parameters, R, η, and H are used here in both general and specific terms. In
general terms, R refers to the expanding diameter of any dualistic system, η refers to the energy coupling
in that system, and H refers to the resulting expansion. In specific terms, Ri is the cosmic inter-cluster
scale, η represents cosmic coupling, and H is Hubble’s constant.

Einstein included the thermodynamic behavior of radiation in his equations but apparently not the interaction
of radiation with matter (represented by η). Lambda appears as a catch-all term in GR and has the same
effect in the cosmological model that η and R have in a finite system. That is, η and R typically combine
in such a way that the expansion of the system accelerates. This will be illustrated below.

Expressing the static situation in a two-body problem requires three variables: the masses of the two
objects (m1, m2) and the distance between them r. Employing the cosmological principle (CP), which is
essentially a set of simplifying assumptions, we consider only homogeneous problems and set m1 = m2 = M.



That is, we reduce the system to two variables, M and r. To maintain the CP, we imagine them in uniform
circular motion about their center-of-gravity. Should the system change, we call the rate of change h, which
is expressed in terms of distance as dr/dt = hr.

Next, we consider more complex systems. Figure 1 illustrates the simplest complex system that satisfies
the CP. Two pairs of bodies orbit a common center of gravity, and each pair in turn orbits a moving
center. Because the close pairs are orbiting in the same direction as the wide pair, tidal interaction causes
transfer of angular momentum from the close pairs to the wide pair. Hence, the close pairs spiral in, and
the wide pair spirals out; that is, dualistic behavior occurs. The dense parts are contracting, whereas the less
dense part is expanding. More significantly, the contraction drives or powers the expansion. The bottom
panel shows the system some time later.

What is the minimum number of
parameters required to model
such a system? Consider each
body to have a mass of 0.5 M;
call the distance between the
wide pair, R, and that between the
close pairs, r; call the expansion
rate of the larger system, H, and
the contraction rate of the close
pairs, h. In the idealized case,
conservation of energy can be
used to tie the expansion rate to
the contraction rate, which in
turn can be used to determine r.
Therefore, only three parameters
completely specify a solution: M,
R, and H.

In all non-ideal systems, however,
energy coupling is less than
100% efficient. Owing to frictional
losses and weak interactions with
distant bodies, the energy lost by
the close pairs spiraling in will be
greater than the energy gained by
the wide pair spiraling out.
Therefore, in the real world, we
must include a fourth parameter
η that specifies the coupling
efficiency of energy lost to
energy gained. Therefore, the
simplest real-world dualistic
system requires a minimum of
four parameters: M, R, H, and η.



2.2. Behavior of Finite Dualistic Systems
Although the system pictured in Figure 1 would become “hotter” with time—the close pairs would spiral
together more and more rapidly—we consider a general case that may exhibit a limited rate of decay for
some reason, such that the rate of energy loss is constant. If η is also constant, the wider parts will gain energy
at a constant rate. Work in a gravitational system is inversely proportional to distance; therefore, if energy is
input to the wider part at a constant rate, dR/dt increases with R. That is, the rate of expansion accelerates.

Such behavior is exhibited by the Earth–Moon system, although the source of energy is purely rotational.
Earth’s rotation is coupled to the moon through tidal interactions, as in Figure 1. Because Earth is so much
more massive than the Moon and because it spins considerably faster than the Moon orbits it, rotational
energy is converted to gravitational energy at an approximately constant rate. Therefore, the rate of
expansion of the system—3 × 10-18 s-1 (3 cm yr-1)—is accelerating (Elkins-Tanton 2006, p. 127). Billions
of years ago, when the Moon was in a steeper part of Earth’s gravity well, the expansion was slower.

2.3 Parameters in Infinite Dualistic System (the Universe)
The Friedmann solution includes two independent equations for modeling a homogeneous, isotropic
universe (Friedmann 1922). These model the universe using five parameters: the expansion rate H,
density ρ, pressure p, solution set k, and dark energy Λ.

The pressure, however, is divided by c2 and added to the density term, acting as little more than a small
correction. It can be ignored in the present era. In addition, k is shorthand for three broad sets of solutions
and takes a value of 1, -1, or 0; thus, it is
not a true variable. In the solution for a flat
universe, it is zero. Our universe appears
flat (Tegmark et al. 2004), so the term with
k disappears, and only three parameters
remain: H, ρ, and Λ. Before the observations
of Perlmutter et al. (1999) and Reiss et al.
(1998) were published, however, Λ had
been assumed to have a value of zero, and
the standard model was expressed using
only two fundamental parameters: expansion
rate and density.

As we have seen, a finite gravitational
system that is dynamic and dualistic requires
a minimum of three parameters to specify
it ideally and four in the real world. Because
the universe is dynamic, dualistic, and real,
we assume that modeling it also requires a
minimum of four parameters.

Such a minimally specified model is
illustrated in Figure 2. Each cube has a
dimension of Ri, the distance beyond
which the Hubble relation (v = Hr) is valid,
and contains on order of 1069 baryons (only
24 shown, not to scale) plus lighter quanta



that sum to mass M. An infinite number of
particles is suggested by imagining that the
cube repeats in all directions to infinity, as
shown in Figure 3 (Ledinsky 1998). The
pressure within each clump is always
non-zero and can be arbitrarily high in
local regions up to black hole formation.
The matter pressure between clumps is
explicitly zero, however, given that the
model presupposes divisions between
regions; non-relativistic particles are
bound to the nearest clump, rendering
matter pressure effectively zero between
clumps. Relativistic particles are counted
as radiation, and only radiation interacts
with clumps beyond Ri. The top and
bottom panels in Figures 2 and 3 represent
early and later times, respectively; the
larger system is expanding at the Hubble
rate of H.

As in Figure 1, the close masses become
closer. For completeness, we consider all
forms of energy in which “closer” implies
lower energy: gravitational, electromagnetic,
and nuclear. Conservation of angular momentum and electromagnetic forces prevent the clump from
collapsing quickly. Nonetheless, the total radiant power of the clump or its luminosity density LD represents
the net rate of local contraction in terms of energy. A fraction of LD, η, is coupled to the expansion of the
larger system. Thus, like the finite system in Figure 1, this model requires a minimum of four parameters
to describe it: the mass M of the clumps; the distance Ri between clumps; the rate of clumping LD; and the
coupling of LD to non-local matter, η. Since η is not observable, an unspecified relationship is presumed
to exist that yields H, that is, H = f(M, Ri, LD, η). Thus, the model is causally specified by M, Ri, LD, and
η, but H, M, Ri, and η are sufficient to uniquely characterize it.

3 RESULTS
Because the Friedmann solution with Λ “works,” we ask how the minimum of four parameters in the causal
analysis transpose into the accepted model using only three. The density ρ is M/Ri3, but this ratio alone is
insufficient to uniquely specify either one; hence, Ri or M must appear again. That leaves η and a second
use of Ri or M. Dimensionally, the only way to combine them to yield Λ is η/Ri2. Table 1 lists the inference
explicitly.

Table 1
Three Friedmann Model Inputs from Four Duality Inputs

Friedmann Model Inputs (H, ρ, Λ) Dualistic Inputs (H,M, Ri, η)

Expansion rate H H
Density ρ M/Ri3
Dark energy Λ η/Ri2



4. DISCUSSION
Referring to Figure 1, if we define the system’s luminosity density as the energy lost by the close pairs, a
causal relation clearly exists: H = f(M, R, LD, η). Furthermore, the expansion rate H is a measure of the
system’s rate of change and not its age. Duality posits that the expansion of the universe is likewise
dependent on the same four causal parameters. The implication is that Hubble’s constant H is a measure
of the rate of change in the universe and not its age.

Additionally, the idea of a “critical density” Ω that determines whether the expansion will continue (Ω < 1)
or eventually turn to collapse (Ω > 1) becomes specious. Both processes, contraction and expansion, are
incorporated into the dualistic model from the beginning.

Finally, from Table 1, it can be seen that as the universe expands, density dilutes more quickly than dark
energy. Therefore, the duality model also concludes that regardless of initial conditions, dark energy will
eventually dominate the universe.

These conclusions are based on considerations of cause and effect and not a mathematical proof.
Confirming or refuting them requires solving Einstein’s field equations with duality explicitly incorporated
into the model, that is, with M, Ri, LD, and η as boundary conditions. The prediction is that such a solution
will resemble Friedmann’s, with η/Ri2 replacing Λ. Furthermore, such a solution can be expected to yield
an H that decreases in time as LD decays, which can then be compared to observations.

Perlmutter and Reiss reported a Λ of magnitude 10-52 m-2. Teerikorpi and Chernin (2012) estimated RZG to
be 1.3 Mpc, giving an Ri of 7.8 1022 m; therefore, accounting for dark energy in the dualistic model requires
an η of the order 10–6 or about 1 part per million.

4. CONCLUSION
The standard model has grown in complexity since 1922. For example, Tegmark et al. (2004) assessed six
cosmological parameters using satellite and telescope data. Even so, the measures of duality, Ri, LD, and
η, are still missing. In practice, yet another parameter may be required to describe the degree of clumping.
Nonetheless, a solution to Einstein’s GR field equations that expressly incorporates duality, i.e., with M,
Ri, LD, and η as boundary conditions, is needed. Such a solution would either falsify the duality hypothesis
that Λ = η/Ri2 or confirm it as a physical explanation for the cosmological constant.
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