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Abstract. The notion of a geodesic line (also: geodesic) is a geometric concept which

is a generalization of the concept of a straight line (or a segment of a straight line) in

Euclidean geometry to spaces of a more general type. In this paper I have derived the

geodesic equation for a 2 dimensional spherical surface following a local local minkowski

frame with the minkowski metric localized .
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1. Introduction

One of the central problems in general relativity is the determination of geodesic curves.

These are the curves that a free particle (that is, a particle upon which no force acts,

where force in this case excludes gravity, since the effects of gravity are felt entirely

through the curvature of space-time) will follow in a curved space-time.

The shortest path between two points in a curved space can be found by writing

the equation for the length of a curve (a function f from an open interval of R to

the manifold), and then minimizing this length using the calculus of variations. This

has some minor technical problems, because there is an infinite dimensional space of

different ways to parameterize the shortest path. It is simpler to demand not only

that the curve locally minimize length but also that it is parameterized ”with constant

velocity”, meaning that the distance from f(s) to f(t) along the geodesic is proportional

to |s− t| . Equivalently, a different quantity may be defined, termed the energy of the

curve; minimizing the energy leads to the same equations for a geodesic (here ”constant

velocity” is a consequence of minimisation). Intuitively, one can understand this second

formulation by noting that an elastic band stretched between two points will contract

its length, and in so doing will minimize its energy. The resulting shape of the band is

a geodesic.

In Riemannian geometry geodesics are not the same as ”shortest curves” between

two points, though the two concepts are closely related. The difference is that geodesics
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are only locally the shortest distance between points, and are parameterized with

”constant velocity”.

Going the ”long way round” on a great circle between two points on a sphere is a

geodesic but not the shortest path between the points. The map t → t2 from the unit

interval to itself gives the shortest path between 0 and 1, but is not a geodesic because

the velocity of the corresponding motion of a point is not constant.

Geodesics are commonly seen in the study of Riemannian geometry and more

generally metric geometry. In general relativity, geodesics describe the motion of point

particles under the influence of gravity alone. In particular, the path taken by a falling

rock, an orbiting satellite, or the shape of a planetary orbit are all geodesics in curved

space-time. More generally, the topic of sub-Riemannian geometry deals with the paths

that objects may take when they are not free, and their movement is constrained in

various ways.

This article presents the mathematical formalism involved in defining, finding, and

proving the existence of geodesics, in the case of a spherical 2 dimensional surface.

On webpage [?]...

2. Geodesics in Spherical Surface

Before deriving the geodesic in a spherical surface, it is inevitable that one must be able

to derive the general geodesic equation which can then be applied to any metric field

that spans over a space. hence the first section contains the general over view of the

geodesic equation

2.1. Geodesic Equation

geodesic curves are found by maximizing the proper time between two events, where

the proper time interval is given by

∆τ =

∫ 1

0

√
−gij

dxi

dσ

dxj

dσ
dσ (1)

We can do this by solving the set of Lagrangian differential equations given by

d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa
= 0 (2)

where the Lagrangian function is given by

L =

√
−gij (xk (σ))

dxi

dσ

dxj

dσ

Here, the objects world path is given in parametric form by xi (σ). The metric can

depend on the position, so it too is ultimately a function of the parameter σ, which
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plays the role of t in 2. For this Lagrangian, the coordinates are qa = xa and the

generalized velocities are q̇a = dxa

dσ
≡ ẋa. We therefore have

∂L

∂ẋa
= − 1

2L
gij

(
δi a

dxj

dσ
− dxi

dσ
δja

)
= −gaj

L

dxj

dσ

This follows because gij does not depend on ẋa(it depends only on the coordinates, not

the velocities), and also because gaj = gja.

The other derivative comes out to

∂L

∂xa
= − 1

2L

∂gij
∂xa

dxi

dσ

dxj

dσ

We can get rid of L in these two results by noticing from 1 that

dτ

dσ
=

√
−gij

dxi

dσ

dxj

dσ
= L

We therefore get
∂L

∂ẋa
= −gaj

L

dxj

dσ
= −gaj

dσ

dτ

dxj

dσ
= −gaj

dxj

dτ

∂L

∂xa
= − 1

2L

∂gij
∂xa

dxi

dσ

dxj

dσ
= −1

2

dσ

dτ

∂gij
∂xa

dxi

dσ

dxj

dσ
= −1

2

∂gij
∂xa

dxi

dτ

dxj

dσ

Putting it all together using 2, we get

− d

dσ

(
gaj

dxj

dτ

)
+

1

2

∂gij
∂xa

dxi

dτ

dxj

dσ
= 0

We can now eliminate the parameterσ by multiplying through by −dσ
dτ

:

d

dτ

(
gaj

dxj

dτ

)
− 1

2

∂gij
∂xa

dxi

dτ

dxj

dτ
= 0 (3)

This is one form of the geodesic equation, which is a second order ordinary

differential equation. (Its an ordinary differential equation despite the appearance of the

partial derivative
∂gij
∂xa

because we will know the metric as a function of the coordinates,

so this derivative will be known when we set out to solve the ODE.)

2.2. Curved 2-d surface of a sphere

For a curved 2-d surface of a sphere of radius R. The metric for this space is, using the

usual spherical coordinates θ and φ

gij =

[
R2 0

0 (R sin θ)2

]
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The required derivatives of gij are

∂θgij =

[
0 0

0 2R2 sin θ cos θ

]

∂φgij =

[
0 0

0 0

]
Then 3 becomes (using s as the parameter in place of τ) for a = θ:

R2d
2θ

ds2
−R2 sin θ cos θ

(
dφ

ds

)2

= 0

d2θ

ds2
− sin θ cos θ

(
dφ

ds

)2

= 0

And for a = φ:
d

ds

(
(R sin θ)2

dφ

ds

)
= 0

d

ds

(
sin2 θ

dφ

ds

)
= 0

The last equation can be integrated once to get

sin2 θ
dφ

ds
=
k

R
(4)

where k is a constant with dimensions of length, so that k/R is dimensionless.

Substituting this into the other ODE gives

d2θ

ds2
−
(

k

R sin2 θ

)2

sin θ cos θ = 0

d2θ

ds2
=

k2 cos θ

R2 sin3 θ

We have decoupled the equations, although this latest ODE isnt exactly easy to solve.

We can make a bit of progress by observing that in 2-d space, the infinitesimal interval

is given by ds2 = gijdx
idxj, so

gij
dxi

ds

dxj

ds
=

(
ds

ds

)2

= +1

Here, this gives us

R2

(
dθ

ds

)2

+R2 sin2 θ

(
dφ

ds

)2

= 1

R2

(
dθ

ds

)2

+R2 sin2 θ

(
k

R sin2 θ

)2

= 1
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dθ

ds
= ± 1

R

√
1− k2

sin2 θ
= ± 1

R sin θ

√
sin2 θ − k2

Although we could integrate this directly (using software), the answer isnt terribly illu-

minating. We can take a different approach by rearranging the equation to get

ds = ± R sin θdθ√
sin2 θ − k2

= ± R sin θdθ√
1− cos2 θ − k2

= ± R sin θdθ√
a2 − cos2 θ

where a2 = 1− k2

Now we can use the substitution u = cos θ with du = − sin θdθ

and we get∫
ds = ±R

∫
sin θdθ√
a2 − cos2 θ

= ∓R
∫

du√
a2 − u2

s = ∓R arctan

(
u√

a2 − u2

)
+ u0

If we want the path length to be zero at θ = π/2, this corresponds to u = 0, so we take

u0 = 0. This gives

tan
s

R
= ∓ u√

a2 − u2

Defining ψ ≡ s/R and squaring both sides, we get

tan2 ψ =
u2

a2 − u2

a2 tan2 ψ = u2
(
1 + tan2 ψ

)
u = cos θ = ±a sinψ

Returning to 4, we can now eliminate θ,

since sin2 θ = 1− cos2 θ = 1− a2 sin2 ψ

(
1− a2 sin2 ψ

) dφ
ds

=
k

R
dφ

ds
=

k

R
(
1− a2 sin2 s

R

)
Integrating this using software gives the rather cryptic result

φ = karctanh
(√
−1 + a2 tan

( s
R

)) 1√
−1 + a2

+ φ0

We can convert this into something more meaningful if we remember that

k =
√

1− a2, so
√
−1 + a2 = ik. Also, since

tanh ix =
eix − e−ix

eix + e−ix
= i

sinx

cosx
= i tanx
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the inverse functions are related by

arctanhix = i arctanx

Putting this together, we get

φ− φ0 =
1

i
i tan

(
k tan

( s
R

))
tan (φ− φ0) = k tan

( s
R

)
We now have equations giving θ and φ in terms of s:

cos θ = ±a sin
s

R
tan (φ− φ0) = k tan

( s
R

)
We know that the geodesics on a sphere should be arcs from great circles, that is, arcs

from circles formed by the intersection of a plane containing the center of the sphere

with the sphere itself. Note that were looking for great circles that connect any two

points on the sphere, so these circles need not go through the poles. We can define

these circles by considering a plane with equation z = my where m is a constant, and

its intersection with the sphere x2 + y2 + z2 = R2. All these planes will contain the x

axis, but we are free to define the x axis pointing in any direction from the center of

the sphere so we havent really restricted the solution in any way.

The intersection of the plane and sphere is given by converting to spherical

coordinates:

x2 + y2 + (my)2 = R2

R2 sin2 θ cos2 φ+
(
1 +m2

)
R2 sin2 θ sin2 φ = R2

sin2 θ
(
cos2 φ+ sin2 φ+m2 sin2 φ

)
= 1

±m sinφ =

√
1

sin2 θ
− 1 = cot θ

Thus the equation ±m sinφ = cot θ is the equation of a great circle that includes

the intersection of the x axis with the sphere. which agrees with the geodesic equation

as shown earlier

Conventional spherical coordinates requires φ = 0 along the x axis and since were

passing all our planes through that axis, we need to choose the constant φ0 above to

match this. Weve taken s = 0 on the equator, which also intersects the x axis, so we

need to take φ0 = 0 as well. Therefore the geodesics are

cos θ = ±a sin
s

R
tanφ = k tan

( s
R

)
We need to use a bit of trigonometric wizardry to convert these equations. First,
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sin2 x = 1− cos2 x = 1− 1/ (1 + tan2 x) = tan2 x/ (1 + tan2 x), so

cos2 θ = a2
tan2 s

R

1 + tan2 s
R

1

1 + tan2 θ
= a2

tan2 φ

k2 + tan2 φ

cot2 θ

1 + cot2 θ
= a2

sin2 φ

k2
(
1− sin2 φ

)
+ sin2 φ

=
(1− k2) sin2 φ

k2 + (1− k2) sin2 φ
=

1−k2
k2

sin2 φ

1 + 1−k2
k2

sin2 φ

The LHS and RHS are equal if

cot2 θ =
1− k2

k2
sin2 φ

cot θ = ±
√

1− k2
k2

sinφ

That is, these are great circles if we identify

m =

√
1− k2
k2
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