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Abstract

In classical electrodynamics the vacuum is defined as a region where there are no electric or magnetic fields. In
such a region, a charged particle (such as an electron) will feel no effect — the Lorentz force is zero. The space ex-
ternal to a perfect (i.e., infinite) solenoid can be considered an electromagnetic vacuum, since ~E and ~B vanish there.
While a non-zero vector potential ~A does exist outside the solenoid, it can exert no influence on the particle, and
as such cannot be directly detected or quantified classically. However, in 1959 Aharonov and Bohm predicted that
a vector field would exert a purely quantum-mechanical effect on the phase of the particle’s wave function, which
in principle should be detectable. The predicted phase shift was not observed experimentally until 1986, when
Tonomura brilliantly verified the effect using a microscopic solenoid. This paper provides a simplified explanation
of the Aharonov-Bohm prediction using a path-integral approach that is suitable for the advanced undergraduate.

1. Introduction

The presence of an electric or magnetic field is easy to detect — one simply introduces a charged particle (fixed or
moving at some initial velocity) and observes its behavior. If it accelerates or deflects, then there’s an
electromagnetic field nearby; the greater the deflection, the stronger the field. The electromagnetic field is, of
course, composed of the electric field ~E and the magnetic field ~B, either singly or in combination. But Maxwell’s
equations reveal a deeper phenomenon associated with these fields, one that was not experimentally
demonstrated until relatively recently. It involves the concept of a potential, which comes in two forms — the
3-component vector potential ~A and the scalar potential Φ, both of which are generally time-dependent functions
of space. These potentials arise from a consideration of the differential forms of the two homogeneous Maxwell’s
equations,

~∇ · ~B = 0

~∇× ~E =−
1

c

∂ ~B

∂ t

which can be solved directly to give

~B = ~∇× ~A

~E =−~∇Φ−
1

c

∂ ~A

∂ t

The four potential quantities combine into what is called the four-potential Aµ(= Φ, ~A) which, unlike either ~E or ~B,
transforms like a Lorentz four-vector. It is in this sense that the four-potential is more fundamental than the
electric and magnetic fields.

1. Classical Invisibility of the Potential

The scalar potential Φ is familiar from high school electromagnetism, where it is commonly identified with the
potential difference or voltage V across a battery. But the vector potential ~A normally does not make its
appearance until much later; indeed, many undergraduate science courses ignore it completely. Perhaps much of
the reason for this stems from a preoccupation with the electric and magnetic fields themselves, which are usually
the only ‘‘solutions’’ sought in undergraduate physics and engineering classes. When ~A is finally introduced, it’s
generally because some problems are easier to solve by first calculating the potential, then using ~B = ~∇× ~A (in the
same way that the scalar potential is used calculate ~E).
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But there are other reasons why ~A doesn’t get more immediate attention. For one (unlike the magnetic field itself)
the vector potential is impossible to observe classically. Another reason involves the related fact that, like the
scalar potential, the vector potential does not have a unique representation in any given application. For example,
the potential difference ∆V = V − V0 of a charged sphere depends on how the ground potential V0 is defined; like
potential energy, the only thing that’s ever measured is the difference between two energy levels, as there is no
absolute reference. The same is true for ~A. To see this, we consider a simultaneous change in Φ and ~A given by the
gauge transformation

Φ′ = Φ+
∂ λ

∂ x0

~A′ = ~A− ~∇λ

where λ(x , t) is an arbitrary function of the spacetime coordinates. Substituting these new potentials into the
expressions ~B′ = ~∇× ~A′ and ~E′ =−~∇Φ′ − ∂ ~A′/∂ x0 shows that

~E′ = ~E
~B′ = ~B

Thus, the electric and magnetic fields remain unchanged under a gauge transformation of the fields, and by this
we say that Maxwell’s equations are gauge invariant. Because of the arbitrariness of the gauge parameter λ(x),
the four-potential Aµ has no unique mathematical definition. Very often, a clever choice of the gauge parameter
can be used to simply the calculation of ~E and ~B. Several examples are the Coulomb gauge and the Lorentz gauge,
but we will not be needing them in what follows.

For many years after Maxwell first set down his famous equations, the gauge property of the potentials was
generally looked upon as only a useful computational device, even a mathematical oddity, and little real meaning
was ascribed to the potentials themselves (the vector potential ~A in particular). Indeed, because it could not
actually be seen or detected, it took a back seat to the magnetic field, which was considered the only real field. To
give a concrete example of this, consider an ideal solenoid of very long (essentially infinite) length. When a
current is sent through the coiled wire, a magnetic field is set up within the solenoid, while the magnetic field
external to the coil is zero. If an observer now directs a moving particle of charge q outside the coil, the particle
will not experience any deflection (recall the Lorentz force law ~F = q/c ~v× ~B), because the magnetic field is zero
there. But the vector potential exterior to the solenoid is not zero; in fact, there is one non-zero component about
the cylindrical axis of the solenoid given by

Aφ =
Br2

s

2r
where rs is the radius of the solenoid and r is the radial distance from the axis. Nevertheless, an observer sees the
particle proceeding on its merry way, and concludes that no field is present. The vector potential thus escapes
detection.

2. The Aharonov-Bohm Prediction

It was not until 1959 that a method was devised for demonstrating the physical reality of the vector potential.
Actually, it was little more than a thought experiment because it could only be demonstrated mathematically.
David Bohm and his graduate student Yakir Aharonov, both at the University of Bristol at the time, showed
theoretically that the vector potential should be detectable when applied to the famous double-slit experiment.
The proposed setup consisted of a coherent charged particle source and the usual double slit and distant detector
screen. By firing the particles one at a time at the slit, each particle’s wave function interferes with itself, resulting
in the usual interference pattern at the detector. The Aharonov-Bohm ansatz was to imagine placing a tiny
solenoid immediately behind and between the two slits, where presumably the solenoid’s external vector potential
would induce a measurable phase shift in the pattern.

3. Path Integral Approach

The mathematical reasoning we will use for the predicted shift is equivalent but different than that employed by
Aharonov and Bohm, but it will provide additional insight into the strange world of the four-potential. It will also
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give us the chance to use a particularly powerful quantum tool, which is the path integral approach originally
pioneered by physicist Richard Feynman in his 1942 Princeton doctoral dissertation. The path integral provides a
particularly clear and elegant solution to the thought experiment that Aharonov and Bohm proposed.

The path integral is a mathematical way of describing the probability amplitude that a particle will go from Point
A to Point B in some finite period of time. It says that the particle can traverse any intermediate path on its way to
Point B. This means that, after leaving Point A, the particle can execute literally any of an infinite number of paths,
crazy or otherwise, until it arrives at Point B. More amazingly, each path that the particle can take is just as
important and logical as any other, including the classical, direct path from A to B. Does the particle really take all
these paths? Mathematically, the answer is a definite yes. In reality, we can never really know just what the
particle does. But for each possible path there is a corresponding probability amplitude, and these amplitudes can
interfere with one another constructively or destructively. The crazy paths tend to be the ones that get canceled
out by destructive interference, while the logical, ‘‘classical’’ paths reinforce one another. While the path integral
is necessarily infinite-dimensional, it can in principle be calculated in closed form; for simple problems, such as
the free particle and the harmonic oscillator, the calculation is straightforward and agrees perfectly with the
demands of quantum mechanics.

Path integrals can also be applied to fields, in which case they give the probability amplitude that a field will
propagate or transition from one field to another over a specified period of time. But the Aharonov-Bohm thought
experiment described here will only be concerned with charged particles (like electrons) going from Point A (their
source) through the double slit to Point B (the detector).

The path integral for a particle going from Point x = A to Point x = B when the slits are not present is expressed
by

I =

∫

D x(t) exp
�

iS(x , t)
ħh

�

Here, I represents the probability amplitude for the overall process; it is a complex number, and its conjugate
square represents the real probability that the particle will leave A and arrive at B. The quantity D x is shorthand
for the infinite path sequence

∫

d x1 d x2 d x3 . . ., where each x = x(t) represents a given path and the single
integral sign represents an infinite number of them, one integral for each path. The quantity S in the exponential
term is the action, which is defined as the integral of the lagrangian density L over time. Since we’ll be
considering the motion of classical charged particles moving with small velocities, we’ll employ the non-relativistic
form of the lagrangian. Recall that the lagrangian for a free particle of mass m is just L0 = 1/2 m(d x/d t)2. For a
free particle having a charge q in the presence of a vector potential, it becomes

L =L0 +
q

c
Ai

d x i

d t

(Note that we have set the scalar potential term A0 = Φ to zero, because this field is absent in the Aharonov-Bohm
setup.) The path now integral looks like

I =

∫

D x(t) exp
�

iS0

ħh

�

exp

�

iq

ħhc

∫ t

0

Ai
d x i

d t
d t

�

(3.1)

where S0 =
∫ t

0
L0d t. Lastly, note that the integral over time of the vector potential term becomes a line integral

over space:
∫ t

0

Ai
d x i

d t
d t =

∫ B

A

Aid x i

so we have, finally,

I =

∫

D x(t) exp
�

iS0

ħh

�

exp

 

iq

ħhc

∫ B

A

Ai d x i

!

Armed now with the path integral, let us proceed to the Aharonov-Bohm experiment itself.
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4. Derivation of the Aharonov-Bohm Phase Shift

Consider the above plan view of the classic double-slit experiment, consisting of a source P of identical particles
each having a charge q (electrons will do nicely), an impenetrable screen with two closely-spaced, narrow slits,
and a detector Q. In practice, the slit widths will be on the order of several microns, separated by a section of
screen of comparable dimension. Such small distances are necessary in view of the quantum nature of the double
slit experiment itself. In addition, we place a solenoid (Φ) immediately behind the slit separation. The solenoid
itself must be extremely small, and the ends must be shielded in such a way as to prevent any ‘‘fringe’’ interaction
with the charged particles.

We begin with the solenoid in place but with the current turned off, so ~A= 0 outside the solenoid. We now start
firing charged particles at the slits at a rate slow enough to prevent the particles from interacting with one
another. Some of the individual particles will pass through Slit 1 (path γ1)and some through Slit 2 (path γ2), but
in general each particle will seem to go through both slits — this is, after all, the nature of the quantum weirdness
of the double slit experiment! We can associate a path integral for each slit:

I1 =

∫

1

D x exp
�

iS0

ħh

�

I2 =

∫

2

D x exp
�

iS0

ħh

�

where the subscripts refer to the paths taken by the particles through the two slits. The paths are constrained to
go through their respective slits, but they’re free-particle path integrals, and we know the solution to such
integrals. For an unconstrained particle going from point xA to point xB, it’s

I =
� m

2πiħht

�1/2

exp

�

im(xB − xA)2

2t

�

(The exponential term is a phase factor that will disappear when we take the conjugate square of I , so we’ll ignore
it in the subsequent analysis.) In view of this, I1 and I2 can differ only in phase, and so we write

I1 =
� m

2πiħht

�1/2

exp
�

iθ1

ħh

�

I2 =
� m

2πiħht

�1/2

exp
�

iθ2

ħh

�

(4.1)

where the quantities θ1 and θ2 are phase constants reflecting the path constraints. The total path integral is then
I = I1 + I2, which we can write as

I =
� m

2πiħht

�1/2

exp
�

iθ1

ħh

��

1+ exp
�

i(θ2 − θ1)
ħh

��
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The quantity (θ2 − θ1)/ħh≡∆ represents the phase difference between the combined paths; the detector at any
given point will see constructive interference when ∆= 2nπ and destructive interference when ∆= (2n+ 1)π,
where n is an integer. The path integral I is a probability amplitude, and to get the probability we have to take the
conjugate square of this quantity. It is not difficult to show that

I∗I = |I |2 =
2m

πħht
cos2

�

1

2
∆
�

(4.2)

Thus, the path integral approach to the double-slit experiment explains the sinusoidal interference pattern seen at
the detector.

We now start the current running into the solenoid. What effect, if any, can we expect? The presence of the
solenoid induces a longitudinal magnetic field inside the solenoid, but this magnetic field is restricted to its
interior; thus, there is no external magnetic field to affect the charged particles as they pass through the slits. As
far as they’re concerned, they see the same vacuum as they did when the solenoid was turned off. But in view of
(3.1) there’s now an additional term in the path integral, and we can no longer use the free-particle solution. Or
can we? From the symmetry of the set-up we can assume with negligible error that the line integral

∫

Ai d x i is
independent of the path taken from one point to another, so we can take this term out of the path integral and
treat it as a phase coefficient. For path n (= 1, 2), we have

In =

∫

n

D x(t) exp
�

iS0

ħh

�

exp

�

iq

ħhc

∫

n

Aid x i

�

= exp

�

iq

ħhc

∫

n

Aid x i

�
∫

n

D x(t) exp
�

iS0

ħh

�

=
� m

2πiħht

�1/2

exp
�

iθn

ħh

�

exp

�

iq

ħhc

∫

n

Aid x i

�

As before, the total path integral is I = I1 + I2, and with the solenoid turned on this can be written as

I =
� m

2πiħht

�1/2

exp
�

iθ1

ħh

�

exp

�

iq

ħhc

∫

1

Ai d x i

�

+
� m

2πiħht

�1/2

exp
�

iθ2

ħh

�

exp

�

iq

ħhc

∫

2

Ai d x i

�

=
� m

2πiħht

�1/2

exp
�

iθ1

ħh

�

exp

�

iq

ħhc

∫

1

Aid x i

��

1+ exp (i∆)exp

�

iq

ħhc

�
∫

2

Aid x i −
∫

1

Aid x i

���

(4.3)

where we have pulled out two phase factors (which will cancel out when we calculate |I |2). The last exponential
quantity represents a closed path from the particle source to the detector and back:

∫

2

Aid x i −
∫

1

Aid x i =−
∮

Ai d x i

where the minus sign reminds us that the closed path under consideration is clockwise. Using Stoke’s theorem,
this integral can be written as the surface integral

∮

Ai d x i =

∫∫

~∇× ~AdS

where the surface in question is the cross section of the solenoid. But this is just the magnetic flux ΦB through the
axis of the solenoid, given by

∫∫

~∇× ~AdS =

∫∫

~B · n̂ dS = ΦB

Equation (4.3) now becomes

I =
� m

2πiħht

�1/2

exp
�

iθ1

ħh

�

exp

�

iq

ħhc

∫

1

Aid x i

�

�

1+ exp (i∆)exp
�−iqΦB

ħhc

��
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The square of this path integral is easily shown to be

|I |2 =
2m

πħht
cos2

�

1

2

�

∆−
qΦB

ħhc

��

(4.4)

Comparing this result with (4.2), we see that the effect of the solenoid on the charged particles is to shift the
pattern in accordance with

∆→∆−
qΦB

ħhc
When Aharonov and Bohm derived this formula there was no way to test this shift experimentally — the required
solenoid had to be perfectly shielded and of such a small size (no more than several microns in diameter) that
fabrication was impossible. And while there was hardly any doubt that they had made a major discovery, many in
the physics community continued to doubt that the vector potential could ever be detected, and no less an
authority than Niels Bohr expressed doubt on the Aharonov-Bohm prediction.

5. Experimental Verification of the Aharonov-Bohm Effect

In the years following publication of the Aharonov-Bohm paper, several attempts were made by various
researchers to construct a suitable solenoid. For a while, it appeared that microscopic magnetized iron fibers
might be workable, and results were obtained that appeared to verify the Aharonov-Bohm prediction. But
indisputable results were not achieved until 1986, when Akira Tonomura and his colleagues (following earlier
efforts they conducted in 1982) succeeded in producing a 6-micron diameter, micro-fabricated toroidal solenoid
utilizing the Meissner effect. The results matched the predicted phase shift perfectly, and the Aharonov-Bohm
effect was finally verified experimentally. For his work, Tonomura received the Nishina Memorial Prize, the Asahi
Prize, the Japan Academy and Imperial Prize, and the Benjamin Franklin Medal in Physics.

6. Comments

There are few more important quantities that Nature hides so effectively than the four-potential Aµ. It underlies
all of electrodynamics, yet its inherent gauge arbitrariness made its physical existence doubtful until long after
Maxwell first wrote down his equations.

But arbitrariness in a physical theory is often a sign from Nature that something profound is going on. Indeed,
arbitrariness in an action integral actually represents a mathematical symmetry, and in a seminal paper written in
1918 the noted German mathematician Emmy Noether proved that mathematical symmetries are responsible for
(and equivalent to) conservation theorems. A famous example is the local gauge (or phase) symmetry of quantum
theory, which the great German mathematical physicist Hermann Weyl subsequently showed is responsible for the
conservation of electric charge.

In order to simplify the problem and make it more accessible to the student, the path integral technique used here
relied heavily on the free-particle path integral to avoid evaluating the infinite integral. This effectively required
‘‘localizing’’ the paths around the slits and the solenoid, along with the line integral

∫

Ai d x i itself, but the end
result agrees with a more mathematically rigorous analysis. It should be noted by the student, however, that even
the free-particle and simple harmonic oscillator problems require some rather cumbersome (if straightforward)
algebra. Shankar’s text devotes two chapters to the path integral (simple and advanced), and the student is
referred to that book for additional information.
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