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Abstract
Legendre’s conjecture, stated by Adrien-Marie Legendre ( 1752-1833

), says there is always a prime between n2 and (n+1)2 . This conjecture
is part of Landau’s problems. In this paper a proof of this conjecture is
presented, using the method of generating prime numbers between con-
secutive squares, and proving that for every pair of consecutive squares
with n = 3 may be generated at least one prime number that belongs to
the interval

[
n, (n+ 1)2

]
Since in the intervals

[
1, (1 + 1)2

]
and

[
2, (2 + 1)2

]
, there are prime

numbers; 3, 5 and 7, respectively, then the Legendre conjecture is true for
every pair of consecutive squares.

1 Prior Definitions.
In this section, elements and mathematical functions, which will be used to
establish the algorithm generating prime numbers in the interval between two
consecutive squares will be defined.

Definition 1.1. Primorial

For the nth prime number pn the primorial pn# is defined as the product

of the first n primes: pn# =

pk∏
k=1

pk

Definition 1.2. Euler’s totient function.

Euler’s totient or phi function, ϕ(n) , is an arithmetic function that counts
the totatives of n, that is, the positive integers less than or equal to n that are
relatively prime to n.
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Definition 1.3. Euler totient function of primorials.

ϕ(pn#) =

pk∏
k=1

(pk − 1)

Theorem 1.1. Bertrand-Chebyshev theorem: states that for any integer n >
3, there always exists at least one prime number p with n < p < 2n − 2. A
weaker but more elegant formulation is: for every n > 1 there is always at least
one prime p such that n < p < 2n.

Ramanujan, S. (1919). "A proof of Bertrand’s postulate". Jour-
nal of the Indian Mathematical Society 11: 181–182

2 Algorithm prime number generator in the range[
a2, (a− 1)2

]
; through primorials and Bertrand-

Chebyshev theorem.
Lemma 2.1. If between two consecutive squares there is at least one prime
number, with a = 3 , then this prime number can be generated by the following
algorithm: being pn = 3 ; py ∈ [a, 2a] (Bertrand-Chebyshev theorem); pn 5
a < pn+1

If ∃ pz ∈
[
a2, (a− 1)2

]
−→ ∃

∏
p

px ;
∏
p

px > a2 such that:

⌊
(
∏
p

px · pn#+ a2)/py

⌋
6≡

0(mod ∀pk) and

⌊
(
∏
p

px · pn#+ a2)/py

⌋
≡ 1(mod 2) ; pk ∈ [2, pn] ; then it

holds:

py ·

⌊
(
∏
p

px · pn#+ a2)/py

⌋
+ r(py) − a2 =

∏
p

px · pn# ; and py ·⌊
(
∏
p

px · pn#+ a2)/py

⌋
−
∏
p

px · pn# = a2 − r(py) = pz ; where r(py) is

the residue of py ; pz ∈
[
a2, (a− 1)2

]
; py ·

⌊
(
∏
p

px · pn#+ a2)/py

⌋
−
∏
p

px ·

pn# = a2 − r(py) 6≡ 0(mod ∀pk) ; Since all n 5 a2 is prime or n ≡ 0(mod pk)

Proof. Inasmuch as pn# ≡ 0(mod ∀pk) and ∃ pz ∈
[
a2, (a+ 1)2

]
; r(py) <

2a ; ∀pz ∈
[
a2, (a− 1)2

]
→ pz = a2 − d ; d 5 2a− 1→ d ∈ {r(py)}

If for all , ∀

⌊
(
∏
p

px · pn#+ a2)/py

⌋
and ∀py ∈ [a, 2a] ; was fulfilled
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{⌊
(
∏
p

px · pn#+ a2)/py

⌋
≡ 0(mod pk)

}
→

{
py ·

⌊
(
∏
p

px · pn#+ a2)/py

⌋
+

r(py) − a2 =
∏
p

px · pn#

}
→ py ·

⌊
(
∏
p

px · pn#+ a2)/py

⌋
−
∏
p

px · pn# =

a2 − r(py)

And a2 − r(py) ≡ 0(mod pk) But this last statement is contrary to the
starting, ie: ∃ pz ∈

[
a2, (a− 1)2

]
So, by contradiction, Lemma 2.1 is proved.

2.1 Examples of prime numbers generation between con-
secutive squares.

Example 2.1. pn# = p2# = 2 · 3 = 6 ; 3 5 a < pn+1 ; a = 3 ; py ∈
[3, 2 · 3] ; py = 5 ;

∏
p

px = 22 · 17 > 32

{⌊
(22 · 17 · p2#+ 32)/5

⌋
= 83 (prime number)

}
→
⌊
(22 · 17 · p2#+ 32)/5

⌋
·

5− 22 · 17 · p2# = 7 (prime number) ; 7 ∈
[
32, (3− 1)2

]
Example 2.2. pn# = p2# = 2 · 3 = 6 ; 3 5 a < pn+1 ; a = 4 ; py ∈
[4, 4 · 2] ; py = 5 ;

∏
p

px = 37 > 42 (prime number)

{⌊
(37 · p2#+ 42)/5

⌋
= 47 (prime number)

}
→
⌊
(37 · p2#+ 42)/5

⌋
· 5 −

37 · p2# = 13 (prime number) ; 13 ∈
[
42, (4− 1)2

]
Example 2.3. pn# = p3# = 2 · 3 · 5 = 30 ; 5 5 a < pn+1 ; a = 5 ; py ∈
[5, 5 · 2] ; py = 7 ;

∏
p

px = 29 > 52 (prime number)

{⌊
(29 · p3#+ 52)/7

⌋
= 127 (prime number)

}
→
⌊
(29 · p3#+ 42)/7

⌋
· 7 −

29 · p3# = 19 (prime number) ; 19 ∈
[
52, (5− 1)2

]
Example 2.4. pn# = p4# = 2 · 3 · 5 · 7 = 210 ; 7 5 a < pn+1 ; a = 9 ; py ∈
[7, 7 · 2] ; py = 11 ;

∏
p

px = 251 > 72 (prime number)

{⌊
(251 · p4#+ 92)/11

⌋
= 4799 (prime number)

}
→
⌊
(251 · p4#+ 92)/11

⌋
·

11− 251 · p4# = 79 (prime number) ; 79 ∈
[
92, (9− 1)2

]
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3 The existence of at least, a prime number be-
tween consecutive squares, for every interval[
a2, (a− 1)2

]
By Bertrand-Chebyshev’s theorem the following lemma is derived:

Lemma 3.1. Be any primorial. And let the Euler functions ϕ#(pn# +
2a) ; ϕ#(pn#+ a) ; pn 5 a < pn+1

Symbolizing ϕ#(pn#+2a) and ϕ#(pn#+ a) ; the functions that count the
number of relatively prime integers; with respect to a given primorial, and in
the intervals [1, pn#+ 2a] ; [1, pn#+ a].

By Bertrand-Chebyshev’s theorem: in the interval [a, 2a] there, at a mini-
mum, a prime number. So is fulfilled: ϕ#(pn#+ 2a)− ϕ#(pn#+ a) = 1

Proof. Any number that is prime relative to ϕ(pn#) ; and that belongs to the
interval z ∈ [pn#+ 2a, pn#+ a] ; satisfies: z − pn# = p ; p ∈ [a, 2a]

In fact:
{
(z, pn#) = 1 → z 6≡ 0(mod ∀pk)

}
; pk 5 pn

{
(z, pn#) = 1 →

z 6≡ 0(mod ∀pk)
}
→ ∀z ∈ [pn#+ 2a, pn#+ a] z − pn# = p ; p ∈ [a, 2a]

Therefore, Lemma 3.1 is proved and the equivalence with Bertrand-Chebyshev’s
theorem:{

∀ [a, 2a] ∃ p ∈ [a, 2a]
}
≡
{
∀ a ; pn 5 a < pn+1 ; ∃ z (z, pn#) = 1 ; z ∈

[pn#+ 2a, pn#+ a] ; z − pn# = p ; p ∈ [a, 2a]
}

Example 3.1. { ϕ#(p3#+ 2 · 6)− ϕ#(p3#+ 6)} = {37, 41} ; ϕ(p3#) = ϕ(2 ·
3 · 5) = ϕ(30)

{37, 41} − p3# = {7, 11} ; 7 = p ∈ [6, 2 · 6] ; 11 = p ∈ [6, 2 · 6] ; p3 5 6 <
p3+1 ; ϕ#(p3#+ 2 · 6)− ϕ#(p3#+ 6) = 1

3.0.1 The floor function and Lemma 3.1

Let the floor function bxc . One of its properties to the sum of two integers, it
is:

⌊
x1+x2

n

⌋
=
⌊
x1

n

⌋
+
⌊
x2

n

⌋
; n, x1, x2 ∈ {N} ; x1 = x2

Likewise is fulfilled:
⌊
x1−x2

n

⌋
=
⌊
x1

n

⌋
−
⌊
x2

n

⌋
; n, x1, x2 ∈ {N}

Equivalence between Bertrand-Chebyshev’s theorem and Lemma 3.1, to-
gether with the above properties of the floor function, imply the following result:

ϕ#(pn#+2a)−ϕ#(pn#+a) =

⌊
pn# ·

pk∏
k=1

(1− 1

pk
)

⌋
+

⌊
2a ·

pk∏
k=1

(1− 1

pk
)

⌋
−⌊

pn# ·
pk∏
k=1

(1− 1

pk
)

⌋
−

⌊
a ·

pk∏
k=1

(1− 1

pk
)

⌋
= 1
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ϕ#(pn#+2a)−ϕ#(pn#+a) =

⌊
2a ·

pk∏
k=1

(1− 1

pk
)

⌋
−

⌊
a ·

pk∏
k=1

(1− 1

pk
)

⌋
= 1

The same lower bound is obtained for intervals between consecutive squares.
So that the interval is equal in amount to the integer which includes; to the
interval [a, 2a] ; the interval between consecutive squares for the same a , be
modified to obtain the same amount; ie:

ϕ#(pn#+a2)−ϕ#(pn#+(a−1)2+a−1)→
[
a2, (a− 1)2 + a− 1

]
; (a2−

(a− 1)2 − a+ 1) = a = (2a− a)

Therefore, we have:
{
ϕ#(pn# + a2) − ϕ#(pn# + (a − 1)2 + a − 1) ≡

ϕ#(pn#+2a)−ϕ#(pn#+a)
}
→ ϕ#(pn#+a2)−ϕ#(pn#+(a−1)2+a−1) = 1

Therefore: ∀a ∃pz ∈
[
a2, (a− 1)2 + a− 1

]
, as between consecutive squares

(12, 22) ; (22, 32) ; there are prime number; 3, 5 and 7, respectively, then the
Legendre conjecture is true for every pair of consecutive squares.

3.0.2 Condition should meet algorithm ( lemma 2.1 ), generating
prime numbers between consecutive squares, to the inexis-
tence of at least one prime number between consecutive squares.

For the algorithm derived from Lemma 2.1, there is a particular case of this
algorithm given by: pn = 3 ; pn 5 a < pn+1 ; py ∈ [a, 2a] ; pk 5 pn∏

p

px > a2 ;
∏
p

px = 2n · px ; px > a2 ; (px, pn#) = 1. By Lemma

2.1 we have that if is true:
⌊
(2n · px · pn# + a2)/py

⌋
6≡ 0(mod ∀pk) ; and⌊

(2n · px · pn#+ a2)/py
⌋
≡ 1(mod 2) ; then: py ·

⌊
(2n · px · pn#)/py

⌋
− 2n · px ·

pn# = p ; p ∈
[
a, (a− 1)2

]
Condition must meet the algorithm derived from lemma 2.1, so that there

is not a prime number between two consecutive squares:
Only if:

{
∀ 2n, px

⌊
(2n · px · pn#+ a2)/py

⌋
≡ 0(mod pk)

}
→
{
∀ py ·

⌊
(2n ·

px · pn#)/py

⌋
− 2n · px · pn# 6= p

}
→ @ pz ∈

[
a, (a− 1)2

]
Definition 3.1. If the previous condition is fulfilled for all 2n · px ; then all
prime number px greater than a2 ; could be represented by:

Definition.
⌊
(2n · px · pn#+ a2)/py

⌋
= Zn · pk ;

{
Zn · pk · py + r(py) = 2n · px ·

pn#+ a2
}
→ a2 − r(py) ≡ 0(mod pk) ; px = Zn2·pk

2n·pn#

Forming the product:
∏
p

px =
∏
p

Zn2 · pk
2n · pn#

, If the condition is fulfilled,

given by Definition 3.1, then you would have to:
∏
p

Zn2·pk

2n·pn#
+ 1 =

∏
p

Zn3·pk

2n·pn#
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But this last equality, it is obviously impossible. So will exist infinite solu-
tions which fulfill:

⌊
(2n·px·pn#+a2)/py

⌋
6≡ 0(mod ∀pk) ; and

⌊
(2n · px · pn#+ a2)/py

⌋
≡

1(mod 2) ; then : py ·
⌊
(2n · px · pn#)/py

⌋
− 2n · px · pn# = p ; p ∈

[
a, (a− 1)2

]
And finally we have that, between any pair of consecutive squares, there is

at least one prime number.
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