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The basic ideea of this paper is the algebraic construction of some func-
tions representing prolongations of the Smarandache type functions to more
complete sets already known and having specified properties.

A. Starting from a sequence of positive integers ¢ : N* — N* satisfying
the condition

¥n € N*, Im, € N*, Ym > m, = n/o (m) (1)

(such sequences-possibly satisfying an extra condition-considered by C. Chris-
tol to generalise the p-adic numbers were called also mudtiplicative convergent
to zero; for example: o (n) = nbit was built an associated Smarandache type
function that is S, : N* — N* defined by

S, (n) = min {m, : m, is given by (1)} (2)

(For ¢ : N* — N* with o (n) = n! the associated function S, is just the
Smarandache function.)

The sequence is noted g and the associated function Sgq.

For each such a sequence, the associated function has a series of properties
already proved, from whom we retain:

Soq ([n1,na]) = max {Seq (n1) , Sea (n2)} (see [1, th. 2.2]). (3)

We can stand out:-the universal algebra (IN*, Q). the set of operations is
Q = {Vy4, po} where Vg : (_N"‘)2 — N* with Vz,y € N*,z Va ¥y = [z,] and



©o : (N*)? — N* the null operation that fixes 1-unique particular element
with the role of neutral element for ”Vy”; 1 = ey, -the universal algebra
(N*, Q) with @ = {V, 1y} where V : (N*)2 - N*,Vz,y € N, zVy =
sup {z,y} and ¢y : (N*)a — N* anull operation that fixes 1-unique particular
element with the role of neutral element for "V”: 1 = e,. We observe that
the universal algebra (N*, Q) and (N*, ') are of the same type

(Vd 900>=<V ¢'0>
2 0 2 0

and with the similarity (bijective) Vg <= V and @g <= 1} function Sp, :
N* — N* is a morphism between them.
We already know that ((N*)I , Q) with J-a some set-is an universal alge-

bra with Q = {w;, w} defined by :
un : (N x (N9 — (N%)f
with
Va = {a};c;, b= {biticr, 0,0 € (N9, wy (a,b) = {a; Va bi}ie;
and wg a null operation: e,, = {e&; =1}, (the canonical projections p;
being, of course, morphismes between ((N*)I,Q_) and (N*,Q) (see {3, th.

1.2)])).

We also know that ((N*)", Q) with @ = {61,600} defined by

6;: (N)" x (N")' — (N)!
by
Va = {ai}t,er, b={bi}ies, 0,0 € (N*)I, 01(a,b) = {a: V bi}es

and 6o - a null operation: eg, = {e; = 1},., (neutral element) is an universal
algebra and is of the same type as the above one.

With all these known elements we can state:
Theorem 1 If Sgq : N* — N* is a Smarandache type function defined by
(2), morphism between (N*,Q) and (N*, ) and I is a some set, then there
is an uhique Soq : (N = (N*)! , morphism between the universal alge-
bras ((N*)I,ﬁ) and ((N*)I,W) so that p; © Spa = Sea 0 Di, ¢ € I, where
p; : (N9 = (N*) with Va = {a:};c; € (N*), pj(a) = a;,¥j € I are

the canonical projections, morphismes between (( N+)f ,Q—’> and (N*, ), B; :
(N*)! — N*, analoguous between ((N*)I ,ﬁ) and (N*,Q).
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Proof. We use the property of universality of the universal algebra
((N*)I ,W) : for every (A, 5\) with 8 = {T’,_G_O} is an universal algebra of the
same type with (( N*)! ,ﬁ) and u; : A — N*, Vi € I, morphismes between
(A_, 5) and (IN*,(Y'), there is an unique u : A — (N *)I morphism between the
universal algebras (A, 5) and ((N*)I ,ﬁ) , so that p; ou = u;,Vj € I, with
p; - the canonical projections. A some universal algebra can be ((N*)I ,ﬁ)

because is of the same type and the morphismes from the assumption can be
u; : (N*)! — N* defined by:

Va = {a,-}iel S (N*)I s 'LL]' (a) = SOd (aj) e u; = S()d Oﬁj, V] € I,
where So¢ is 2 Smarandache type function, morphisme, as we know from
(3) and p; - the canonical projections, morphismes between ((N*)I , Q) and
(IN*, Q)(u; are morphismes as a composition of two morphismes). The as-

sumptions of the property of universality being ensured, it results that there
is an unique sgg : (N*)' — (N*)!, morphismes between ((N*)[ , Q) and

((N*)I,W) so that p; o sgg = u;,Vj € I, i.e. pjosgy =Seg0P;, Vel B

B. A sequence of positive integers ¢ : N* — N~ is called ” of divisibility
(ds.)” if: ‘
m/n =0 (m) /o (n) (4)

and ”of strong divisibility (s.d.s.)” if:
o ((m,n)) = (c(m),o(n)), ¥m,n e N", (5)

with (m,n) the greatest common factor.
The sequence s.d.s. were studied by N. Jansen; the Fibonacci sequence
defined by
Fn+1 = Fn - Fn—l with F1 = Fg =1

is a s.d.s.
Starting from a sequence g4 : N* — N* that satisfies the condition

VYn € N*,3m, € N*,VYm € N*, m,/n => nfo (m), (6)

as associated Smarandache’s function was built that is Szz : N* — N* given
by
Si (n) = min{m,, : m, is given by (6)} , Yn € N*, (7)
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having a series of already known properties from which we retain:
if the sequence 044 is s.d.s. and satisfies (6), then

Saa ([n1,m2]) = [Saa (n1) , Saa ()], Yny, ny € N, (8)

where [a, b] is the smallest common multiple of a and b (see [1, th. 2.5}).
We can stand out the universal algebra (IN*,(2) where, this time, 2 =

Vg A ;
{V4, Ad,po} of the type T = ( 2d 2" %0 > with known V, and gg (from

A) and A, : (N*)? — N* defined by
z /\dy = (fE,y) 7vx7y € N*'

It is known that then there is an universal algebra (( N*)! ,ﬁ) with I -

a some set and here Q = {w;, ws, wp} with w;, we known and wy : (N*)! x
(N*)' — (N*)" defined by:

Ak
wy (a,b) = {a; Na bi}iel ,Va = {a"i}iel , b= {bi}iel E(N) :
It can be stated the same as at A:

Theorem 2 If Sy; : N* — N* is a Smarandache type function defined by
(7), endomorphism for the universal algebra (N*, Q) and I - a some set,
then there is an unique sq - (N*)! — (N*)! | an endomorphism for the above
universal algebra ((N*)I , Q) S0 that p; © Sgqa = Saa 0 i, Vi € 1.

The analogical proof with that of th. 1. can be also done directly; the
corespondence 54q is defined and it is shown that is a function, endomorphism,
the required conditions being obviously satisfied.

Remark 1 If the initial sequence oqq isn't at all s.d.s. but satisfies (6) with
a view to the properties of the associated function, a function can be always
defined sqq : (N*)' — (N*)! that is no more an endomorphism for the given
universal algebra (( N *)I ,ﬁ) than in certain conditions or in particular cases

(see [1, th. 2.4.]).
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C. Starting from a sequence noted g of positive integers oo : N* — N~
that satisfies the condition:

Vn € N*, 3m, € N*;Ym € N*,m,/m => n < 04 (m) (9)
are associated Smarandache type function was built, defined by:

S0 (n) = min {m,,\m, satisfles (9) } (10)

having known properties.
Standing out the universal algebra (IN*,{') when here ¥ = {V, A, fo}
with V, to known, and A : (N"‘)2 — N* by

z Ay =inf {z,y},Vz,y € N"

it can be proved the same way that there is an unique sqo : (N*)I — (N*_)I
endomorphism of the universal algebra ((N*)I ,W) so that

Diosgp = Sap 0P, Vi€ I

Above we built the prolongations s;; to more complexe sets of the Smaran-
dache type functions noted S;; (for I = {1} = s;; = S;;). The algebric
properties of the 844, for their restrictions to IN*, could bring new properties
for the Smarandache type function that we considered above.
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