A NOTE ON THE SMARANDACHE PRIME PRODUCT SEQUENCE

A. A. K. MAJUMDAR

Department of Mathematics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh

ABSTRACT

This paper gives some properties of the Smarandache prime product sequence,

 (P_n) , definded by

$$P_n = 1 + p_1 p_2 \dots p_n, n \ge 1,$$

where (p_n) is the sequence of primes in their natural order.

AMS (1991) Subject Classification: 11A41, 11A51.

1. INTRODUCTION

Let $(p_n) = (p_1, p_2,...)$ be the (infinite) sequence of primes in their natural numbers. The first few terms of the sequence are as follows:

 $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11, p_6 = 13, p_7 = 17, p_8 = 19, p_9 = 23, p_{10} = 29.$ Clearly, the sequence (p_n) is strictly increasing (in $n \ge 1$) with $p_n > p_1 p_2$ for all $n \ge 4$. Furthermore, $p_n > n$ for all $n \ge 1$.

The Smarandache prime product sequence, (p_n) , is defined by (Smarandache [5])

$$P_n = 1 + p_1 \ p_2 \dots p_n, \ n \ge 1. \tag{1.1}$$

We note that the sequence (P_n) is strictly increasing (in $n \ge 1$), satisfying the following recursion formulas:

$$P_{n+1} = P_n + p_1 \ p_2 \dots \ p_n(p_{n+1}-1), \ n \ge 1, \tag{1.2}$$

$$P_{n+1} = P_n \, p_{n+1} \cdot (p_{n+1} \cdot 1), \, n \ge 1. \tag{1.3}$$

We also note that P_n is an odd (positive) integer for all $n \ge 1$; furthermore,

$$P_1 = 3, P_2 = 7, P_3 = 31, P_4 = 211, P_5 = 2311$$

are all primes, while the next five elements of the sequence (P_n) are all composites, since

$$P_{6} = 30031 = 59 \times 509,$$

$$P_{7} = 510511 = 19 \times 97 \times 277,$$

$$P_{8} = 9699691 = 347 \times 27953,$$

$$P_{9} = 223092871 = 317 \times 703760,$$

$$P_{10} = 6469693231 = 331 \times 571 \times 34231.$$

Some of the properties of the sequence (P_n) have been studied by Prakash [3], who conjectures that this sequence contains an infinite number of primes.

This note gives some properties of the sequence (P_n) , some of which strengthens the corresponding result of Prakash [3]. This is done in §2 below, and show that for each $n \ge 1$, P_n is relatively prime to P_{n+1} . We conclude this paper with some remarks in the final §3.

2. <u>MAIN RESULTS</u>

We start with the following result which has been established by Majumdar [2] by induction on $n \ (\geq 6)$, using the recurrence relationship (1.3).

<u>Lemma 2.1</u>: $P_n < (p_{n+1})^{n-2}$ for all $n \ge 6$.

Exploiting Lemma 2.1, Majumdar [2] has proved the following theorem which strengthens the corresponding result of Prakash [3].

<u>Theorem 2.1</u>: For each $n \ge 6$, P_n has at most n-3 prime factors (counting multiplicities).

Another property satisfied by the sequence (P_n) is given in Theorem 2.2. To prove the theorem, we would need the following results.

Lemma 2.2: For each $n \ge 1$, P_n is of the form 4k+3 for some integer $k \ge 0$.

<u>Proof</u>: Since P_n is odd for all $n \ge 1$, it must be of the form 4k+1 or 4k+3 (see, for example, Shanks [4], pp. 4). But, P_n cannot be of the form 4k+1, otherwise, from (1.1), we would have $p_1p_2...p_n = 4k$,

that is, $4|p_1p_2...p_n$, which is absurd. Hence, P_n must be of the form 4k+3.

Lemma 2.3: (1) The product of two integers of the form 4k+1 is an integer of the form 4k+1, and in general, for any integer m > 0, $(4k+1)^m$ is again of the form 4k+1, (2) The product of two integers of the form 4k+3 is an integer of the form 4k+1, and the product of two integers, one of the form 4k+1 and the other of the form 4k+3, is integer of the form 4k+3,

(3) For any integer m > 0, $(4k+3)^m$ is of the form 4k+1 or 4k+3 respectively according as m is even or odd.

<u>Proof</u>: Part (1) has been proved by Bolker ([1], Lemma 5.2, pp. 6). The proof of the remaining parts is similar. \Box

We now prove the following theorem.

<u>Theorem 2.2</u>: For each $n \ge 1$, P_n is never a square or higher power of any natural number (> 1).

<u>Proof</u>: If possible, let $P_n = N^2$ for some integer N > 1.

Now, since P_n is odd, N must be odd, and hence, N must be of the form 4k+1 or 4k+3 for some integer $k \ge 0$. But, in either case, by Lemma 2.3, $N^2 = P_n$ is of the form 4k+1, contradicting Lemma 2.2. Hence, P_n cannot be a square of a natural number (> 1). To prove the remaining part, let $P_n = N^1$ for some integers $N > 1, 1 \ge 3$. (*) Without loss of generality, we may assume that 1 is a prime (if 1 is a composite number, let 1 = rs where r is prime, and so $p_n = (N^s)^r$; setting $M = N^s$, we may proceed with this M in place of N). By Theorem 2.1, 1 < n, and hence, 1 must be one of the primes $p_2, p_3, ..., p_n$. By Fermat's Little Theorem (Bolker [1], Theorem 9.8, pp. 16),

$$p_1 p_2 \dots p_n = N^1 - 1 \equiv N - 1 \equiv 0 \pmod{1}$$
.

Thus, N = 1m+1 for some integer m > 0,

and we get
$$p_1 p_2 \dots p_n = (1m)^1 + \binom{1}{1}(1m)^{1-1} + \dots + \binom{1}{1-1}(1m)^{1-1}$$

But the above expression shows that $1^2 1 p_1 p_2 \dots p_n$, which is impossible.

Hence, the representation of P_n in the form (*) is not possible, which we intend to prove. \Box Some more properties related to the sequence (P_n) are given in the following two lemmas. Lemma 2.4: For each $n \ge 1$, $(P_n, P_{n+1}) = 1$.

<u>**Proof</u>**: Any prime factor p of P_{n+1} satisfies the inequality $p > p_{n+1}$.</u>

Now, if $p|P_n$, then from (1.3), we see that $p|(p_{n+1}-1)$, which is absurd. Hence, all the prime

factors of P_{n+1} are different from each of the prime factors of P_n , which proves the lemma.

Lemma 2.5: For each $n \ge 1$, P_n and P_{n+2} have at most one prime factor in common.

<u>**Proof:</u>** Since $P_{n+2}-P_n = p_1 p_2 \dots p_n (p_{n+1} p_{n+2}-1)$,</u>

any prime factor common to both P_n and P_{n+2} must divide $p_{n+1}p_{n+2}-1$. Now, any prime factor of P_{n+2} is greater than p_{n+2} . Hence, it follows that P_n and p_{n+2} can have at most one prime factor in common, since otherwise, the product of the prime factors is greater than $(p_{n+2})^2$, which cannot divide $p_{n+1}p_{n+2}-1 < (p_{n+2})^2$. \Box

From the proof of the above lemma we see that, if all the prime factors of $p_{n+1} p_{n+2}$ -1 are less than p_{n+2} , then $(P_n, P_{n+2}) = 1$. And generalizing the lemma, we have the following result: For any $n \ge 1$, and $i \ge 1$, P_n and P_{n+i} can have at most *i*-1 number of prime factors in common.

3. <u>SOME REMARKS</u>

We conclude this paper with the following remarks.

(1) The sequence (P_n) is well known, it is used in elementary texts on the Theory of Numbers (see, for example, Bolker [1]and Shanks [4] to prove the infinititude of the primes. Some of the properties of the sequence (P_n) have been studied by Prakash [3]. Theorem 2.1 improves one of the results of Prakash [3], while our proof of Theorem 2.2 is much simpler than that followed by Prakash [3]. The expressions for P_6 , P_7 , P_8 , P_9 and P_{10} show that Theorem 2.1 is satisfied with tighter bounds, but we could not improve it further.

(2) By Lemma 2.3 we see that, of all the prime factors of P_n (which is at most n-3 in number for $n \ge 6$, by Theorem 2.1), an odd number of these must be of the form 4k+3. In this connection, we note that, in case of P_6 , one of the prime factors (namely, 59) is of the form 4k+3, while the other is of the form 4k+1; and in case of P_7 , all the three prime factors are of the form 4k+3.

(3) The Conjecture that the sequence (P_n) contains infinitely many primes, still remains an open problem.

<u>REFERENCES</u>

- [1] Bolker, E.D. (1970) Elementary Number Theory. Benjamin Inc., N.Y.
- [2] Majumdar, A. A. K. (1996/97) A Note on a Sequence Free From Powers. <u>Math.</u> <u>Spectrum</u>, 29 (2), pp. 41 (Letter to the Editor).
- [3] Prakash, K. (1990) A Sequence Free From Powers. <u>Math. Spectrum</u>, <u>22</u> (3), pp. 92-93.
- [4] Shanks, D. (1962) <u>Solved and Unsolved Problems in Number Theory Volume I</u>. Spantan Books, Washington, D. C.
- [5] Smarandache, F. (1996) <u>Collected Papers Volume I</u>. Tempus Publishing House, Bucharest, Romania,

[6] Iacobescu, F., (1997) <u>Smarandache Partition Type Sequences.</u> Bulletin of Pure and Applied Sciences, 16E(2), pp. 237-240.