PROOF OF FUNCTIONAL SMARANDACHE ITERATIONS

ZHENG JIANFENG

Shaanxi Financi & Economics Professional College Xianyang, Shaanxi, P. R. China

ABSTRACT: The paper makes use of method of Mathematics Analytic to prove Functional Smarandache Iterations of three kinds.

1. Proving Functional Smarandache Iterations of First Kind.

Kind 1.

Let $f: A \to A$ be a function, such that $f(x) \le x$ for all x, and $\min \{f(x), x \in A\} \ge m_0$, different from negative infinity.

Let f have $p \ge 1$ fix points: $m_0 \le x_1 < x_2 < \cdots < x_p$. [The point x is called fix, if f(x) = x.].

Then:

SI1(x) = the smallest number of iterations k such that $f(f(\dots f(x)\dots)) = \text{ constant.}$

Proof: I. When $A \subseteq Q$ or $A \subseteq R$, conclusion is false.

Counterexample:

Let A=[0,1] with
$$f(x) = x^2$$
, then $f(x) \le x$, and $x_1 = 0$, $x_2 = 1$ are fix points.
Denote: $A_n(x) = \underbrace{f(f(\dots f(x)\dots))}_{n \text{ times}}$, $A_1(x) = f(x)$, $(n=1, 2, \dots)$.

then $A_n(x) = x^{2^n}$ (*h*=1, 2, ...).

For any fixed $x \neq 0$, $x \neq 1$, assumed that the smallest positive integer k exist, such that $A_n(x) = a$ (constant), hence, $A_{k+1}(x) = f(A_k(x)) = f(a) = a$, that is to say a be fix point. So $x^{2^{k+1}} = 0$ or 1, $\Rightarrow x=0$ or 1, this appear contradiction. If $A \subseteq Z$, let A be set of all rational number on [0,1] with $f(x) = x^2$, using the same methods we can also deduce contradictory result.

This shows the conclusion is false where $A \subseteq Q$ or $A \subseteq R$.

II. when $A \subseteq Z$, the conclusion is true.

(1). If $x = x_i$ (x_i is fix point, $i=1, \dots p$). Then $f(x) = f(x_i) = x_i = A_1(x)$. So for any positive integer n, $A_n(x) = x_i$ ($i=1, \dots p$), $\Rightarrow SII(x)=1$.

Keywords and phrases. Functional iterations; fix point; limit.

(2). Let $x \neq x_i$ (x is fixed, $i=1, \dots, p$), if $f(x) = x_i$ ($i=1, \dots, p$), then SI1(x)=1, if $f(x) \neq x_i$ but $f(f(x)) = A_2(x) = x_i$ ($i=1, \dots, p$), then SI1(x)=2. In general, for fixed positive integer k, if $A_1(x) \neq x_i$, $A_2(x) \neq x_i$ \dots $A_{k-1}(x) \neq x_i$, but $A_k(x) = x_i$ then SI1(x)=k.

(3). Let $x \neq x_i$ (x is fixed), and for $\forall n \in \mathbb{N}$ $A_n(x) \neq x_i$ (i=1, ...p), this case is no exist.

Because x is fix point, $m_0 < \cdots < A_n(x) < \cdots < A_2(x) < A_1(x) < x$. So sequence $\{A_n(x)\}$ is descending and exist boundary, this makes know that $\{A_n(x)\}$ is convergent. But, each item of $\{A_n(x)\}$ is integer, it is not convergent, this appear contradiction. This shows that the case is no exist.

(4). Let $x \neq \chi_i$ (x is fixed, $i=1, \dots, p$), if exist the smallest positive integer k such that $A_k(x) = a$ ($a \neq \chi_i$), it is yet unable. Because $A_{k+1}(x) = A_k(x) = a$, $A_{k+1}(x) = f(A_k(x)) = f(a) = a$, this shows that a is fix point, namely, $a = \chi_i$, this also appear contradiction.

Combining (1), (2), (3) and (4) we have

SI1(x) = the smallest number of iterations k such that

$$\underbrace{f(f(\cdots f(x)\cdots))}_{iterted \ k \ times} = \chi_i \qquad (\chi_i \ is \ fix \ point, \ i=1, \cdots p).$$

This proves Kind 1.

We easily give a simple deduction.

Let $f: A \to A$ be a function, such that $f(x) \le x$ for all x, and $\min\{f(x), x \in A\} \ge m_0$, different from negative infinity.

Let $f(m_0) = m_0$, namely, m_0 is fix point, and only one.

Then: SI1(x) = the smallest number of iterations k such that

$$\underbrace{f(f(\cdots f(x)\cdots))}_{\text{illerted } k \text{ times}} = m_0 \cdot$$

2. Proving Functional Smarandache Iterations of Second Kind.

Kind 2.

Let $g: A \to A$ be a function, such that g(x) > x for all x, and let b > x. Then:

SI2(x,b) = the smallest number of iterations k such that

3

$$\underbrace{g(g(\cdots g(x)\cdots))}_{\text{iterted } k \text{ times}} \geq b.$$

Proof: Firstly, denote: $B_n(x) = \underbrace{g(g(\cdots g(x) \cdots))}_{n=1, 2, \cdots}$, $(n=1, 2, \cdots)$.

I. Let $A \subseteq Z$, for $\forall x < b$, $x \in Z$, assumed that there are not the smallest positive integer k such that $B_k(x) \ge b$, then for $\forall n \in N$ have $B_n(x) < b$, so

 $x < B_1(x) < B_2(x) < \cdots < B_n(x) < \cdots < b$.

This makes know that $\{B_n(x)\}$ is convergent, but it is not convergent. This appear contradiction, then, there are the smallest k such that $B_n(x) \ge b$.

II. Let $A \subseteq Q$ or $A \subseteq R$.

(1). For fixed x
b. If $g(x) \ge g(b) > b$, then $B_n(x) \ge g(x) > b$ ($n \in N$), SI2(x,b)=1, if g(x) < g(b) but $B_2(x) \ge g(b) > b$, then $B_n(x) \ge g(b) > b$ ($n \ge 2$), SI2(x,b)=2. In general, if $B_1(x) < g(b)$, $B_2(x) < g(b)$, \cdots $B_{k-1}(x) < g(b)$, but $B_k(x) \ge g(b) > b$, then SI2(x,b)=k.

(2). For fixed
$$x < b$$
, $B_n(x) < g(b)$, $(n \in N)$ then
 $x < B_1(x) < B_2(x) < \dots < B_n(x) < \dots < g(b)$,

so $\{B_n(x)\}$ is convergent. Let $\lim_{n\to\infty} B_n(x) = b^* \because B_n(x) < g(b)$ $(n \in N), \therefore b^* \leq g(b)$. 1). $b^* = g(b)$. $\because \lim_{n\to\infty} B_n(x) = b^* \therefore$ for $\varepsilon = g(b) - b > 0$, \exists positive integer k, when n > k such that $|B_n(x) | g(b)| < \varepsilon$. So $B_n(x) > g(b) | \varepsilon = g(b) | (g(b) | b) = b$. That is to say there are the smallest k such that $B_n(x) > b$. 2). $b^* < g(b)$. $\because g(b^*) > b^*$, $\because \{B_n(x)\}$ does not converge at $g(b^*)$. So $\exists \varepsilon_0 > 0$, for $\forall N, \exists n_1$, when $n_1 > N$, such that $|B_{n_1}(x) - g(b^*)| \ge \varepsilon_0$, then, $B_{n_1}(x) \ge g(b^*) + \varepsilon_0$. On the other hand, $B_n(x) \le b^* | (n \in N) |$, $\therefore B_{n_1}(x) \le b^*$ then $b^* + \varepsilon_0 < B_{n_1}(x) \le b^*$, but this is unable. This makes know that there is not the case.

By (1) and (2) we can deduce the conclusion is true in the case of A belong to Q or R.

Combining I. and II., we have: for any fixed x > b there is SI2(x,b) = the smallest number of iterations k such that $g(g(\cdots g(x) \cdots)) \ge b$. iterative k times

This proves Kind 2.

3. Proving Functional Smarandache Iterations of Second Kind. Kind 3.

Let $h: A \rightarrow A$ be a function, such that h(x) < x for all x, and let b < x. Then: SI3(x,b) = the smallest number of iterations k such that

$$\underbrace{h(h(\cdots h(x)\cdots))}_{iterted \ k \ times} \leq b.$$

Using similar methods of proving Kind 2 we also can prove Kind 3, we well not prove again in the place.

We complete the proofs of Functional Smarandache Iterations of all kinds in the place.

REFERNECES

1. "Functional Iterations" at http://www.gallup.unm.edu/~smarandache/bases.txt

2. East China Normal University Department of Mathematics Writing, Mathematics Analytic, People's Education Press, Shanghai, 1982-4.