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ABSTRACT: The paper makes use of method of Mathematics Analytic to prove Functional 
Smarandache Iterations of three kinds. 

1. Proving Functional Smarandache Iterations of First Kind. 
Kind 1. 

Let f: A ~ A be a function, such that f(x):s; x for all x, and min { f(x), x E A} ;::: mO) 

different from negative infinity. 
Let f have p ~ 1 fix points: mo:S; Xl < X2 < ... < x p' [The point x is called fix, if 

f(x) == x. J. 
Then: 

SIlex) = the smallest number of iterations k such that 
f 

f(f(··· f(x)·· .» == constant. 
\. v J 

iterted k times 

Proof: 1. When Q or AkR, conclusion is false. 
Counterexample: 

Let A=[O, 1J with f(x):::; x2
, then f(x):s; x, and Xl:::; 0, X2 1 are fix points. 

Denote: An (x) == f(f(·· ·f(x) .. . » , Al (x) == f(x) , (n=l, 2, ... ) . 
\. y .I 

n times 

then An (x) = {2n (iF1, 2, ... · ). 

For any fixed x =;t: 0, x =;t: 1, assumed that the smallest posi ti ve integ.er k exist, such that 

An (x) a (constant), hence, Ak+l (x):::; f(Ak(x» == f(a) == a} that is to say a be fix point. 
k~ . 

So x2 =0 or 1, => x=O or 1, th-is appear contradiction. If Z, let A be set of all 

rational number on [0, 1J with f(x) == X2, using the same methods we can also deduce 

contradictory result. 
This shows the conclusion is false where AkQ or AsR. 

II. when A Z, the conclusion is true. 

(1). If x Xi' (Xi is fix point, i=l, ... p ). Then f(x) = f(x) Xi = Al (x). So for any 

posi ti ve integer n, An (x) = Xi (j:;:l, ... p ), => SIl(x) =l. 
f 
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(2). Let x ~ Xi (X is fixed, i=l, .•. P ), if f(x) == Xi (i=l, "'p ), then SIlex) =1, if 

f(x) ~ Xi but f(f(x)) = A2(x) = Xi ( i=l, H.p ), then SIlex) 
f 

f 
In general, for fixed 

posi ti ve integer k, if Al (x) :t:. Xi' A2 (x) ~ Xi ••• Ak 1 (x) ~ Xi' but Ak (x) = Xi then 

SIlex) =k. 
f 

(3). Let x ~ Xi (x is fixed), and for V n E N An (x) ~ Xi (i=l, "'P ), this case is 

no exist. 
Because x is fix point, mo<···<An(x)<···<Az(x)<Al(X)<X. So sequence {An(x)} is 

descending and exist boundary, this makes know that {An (x)} is convergent. But, each item 

of {An(x)} is integer, it is not convergent, this appear contradiction. This shows that 

the case is no exist. 
(4). Let x -:;t:. Xi (X is fixed, i=l, ,-. P ), if exist the smallest posi ti ve integer k such 

that Ak(x) = a (a:t:. Xi ), it is yet unable. Because Ak+l (x) = Ak(x) = a , 

Ak+1(x)==fCAk(x))=f(a)=a, this shows that a is fix point, namely, a=Xi' this also 

appear contradiction. 
Combining (1), (2), (3) and (4) we have 

SIlex) = the smallest number of iterations k such that 
f 

f(f(··· f(x) ... )) = x· C.Xi is fix point, j=l, "'p ). 
'- V J I 

iterted k times 

This proves Kind l. 

We easily give a simple deduction. 
Let f: A ~ A be a function, such that f(x) s x' for all x, and min {f(x),x E A} ~ rno, 

different from negative infinity. 
Let fCmo) == rno, namely, rna is fix point, and only one. 

Then: SIlex) = the smallest number of iterations k such that 
f 

f(/('" /(x)·· .)) = rna' 
\. v J 

ilerled k times 

2. Proving Functional Smarandache Iterations of Second Kind. 
Kind 2. 

Let g: A ~ A' be a function, such that g(x) > x for all x, and let b > x. 

Then: 

SI2(x,b) = the smallest number of iterations k such that 
g 

g(g( ... g(x)·· .)) ~ b . 
\ v I 

iterted k times 
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Proof: Firstly, denote: Bn(x)= ?(g(- .. g(x)·")~, (n=1,2, ... ). 
v 

n times 

1. Let A c Z, for '\I x < b, x E Z, assumed that there are not the smallest posi ti ve 

integer k such that Bk(x);:::: b, then for V n EN have Bn(x) < b, so 

x < Bl (x) < B2(X) < ... < Bn(x) < ... < b. 

This makes know that {Bn(x)} is convergent, but it is not convergent. This appear 

contradiction, then, there are the smallest k such that Bn(x);;::: b. 

II. Let A Q or AeR. 

(1). For fixed x<b. If g(x) '?:. g(b) > b, then Bn(x);;::: g(x) > b ( n EN), SI2(x,b )=1, 
g 

if g(x) < g(b) but B 2 (x);;::: g(b) > b ,then Bn(x) '? g(b) > b (n '?:. 2 ), SI2(x,b) =2. In 
g 

general, if Bl(X) <g(b) , B 2 (x) <g(b) , .. ' Bk 1 (x) < g(b) , but Bk(x)'?:.g(b»b, then 

SI2(x,b) =k. 
g 

(2). For fixed x<b, Bn(x)<g(b), ( nEN) then 

x < Bl(X) < B2 (x) < ... < Bn(x) < ... < g(b) , 

so {Bn(x)} is convergent. Let limBn(x)=b* ": Bn(x)<g(b) (nEN),:. b*-:;;g(b). 
-,»00 

1). b* = g(b). ": limBn(x) b'" :. for e g(b) - b > 0,:3 posi ti ve integer k, when n>k such 
n~<X) 

that IBn (x) g(b)1 < E. SO Bn(x) > g(b) E = g(b) (g(b) b) = b. That to say there are the' 

smallest k such that Bn(x) > b. 2). b* < g(b). "." g(b*) > b*,:· {Bn(x)} does not converge 

at g(b*). So :3 Eo> 0 , for 'liN, :3 nl' when nl > N, such that IBn! (x) - g(b*)1 '?:. Eo' then, 

Bn,(x)c.g(b"')+e o :. Bn\(X»b"'+EO, On the other hand, Bn(x)5:.b'" (nEN),:. 

Bn! (x):::; b· then hOI +eo < Bn, (x):::; b*, but this is unable. This makes know that there is not 

the case. 
By (1) and (2) we can deduce the conclusion is true in the case of A belong to Q or 

R. 
Combining 1. and II., we have: for any fixed x >b there is 

SI2(x,b) = the smallest number of iterations k such that 
g 

g(g( ... g(x)·· -)) ~ b . 
\ V '" .J 

iterted k times 

This proves Kind 2. 
3. Proving Functional Smarandache Iterations of Second Kind. 

Kind 3. 
Let h: A -+ A be a function, such that h(x) < x for all x, and let b < x. 

Then: 
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SI3(x,b) = the smallest number of iterations k such that 
h 

h(h(···h{x)···») ~ b. 
, V J 

iterted k times 

Using similar methods of proving Kind 2 we also can prove Kind 3, we well not prove 
again in the place. 

We complete the proofs of Functional Smarandache Iterations of all kinds in the place. 
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