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Given a positive integer n, let P(n) denote the largest prime factor of n and S(n) denote 
the smallest integer m such that n divides m! 

The function S(n) is known as the Smarandache function and has been intensively studied 
[1]. Its behavior is quite erratic [2] and thus all we can reasonably hope for is a statistical 
approximation of its growth, e.g., an average. It appears that the sample mean E(S) 
satisfies [3] 
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as l\' approaches infinity, but I don't know of a rigorous proof. A natural question is if 
some other sense of average might be more amenable to analysis. 

Erdos [4,5] pointed out that P(n) = S(n) for almost all n, meaning 
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as N approaches infinity. Kastanas [5] proved this to be true, hence the following 
argument is valid. On one hand, 

, . (In(p(n))) . (In(S(n))) . 1. f In(S(n» 
/. = hm E ~ 11m E = hm - . ~ 

n--+C() In( n) n--+x \ In( n) :-; --+x j\i n=1 In( n) 

The above summation, on the other hand, breaks into 1\vo parts: 
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The second part vanishes: 
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while the first part is bounded from above: 
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We deduce that 
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where A is the famous Golomb-Dickman constant [6-9]. Therefore A· n is the asymptotic 
average number of digits in the output of S at an n-digit input, that is, 62.43% of the 
original number of digits. As far as I know, this result about the Smarandache function 
has not been published before. 

A closely related unsolved problem concerns estimating the variance of S. 
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