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1. The Theorem of Platon 

Studying the properties of the proportions the peoples of the antiquity could 
build using the ruler and the compasses. For example if instead of a square of 
side a it was required the construction of another square. of side x determined by 
the condition that the new square has a double area, so 

Pithagora's descendents used to write this relation as 

a 

x 

x 

2a 
and used to build an isosceles rectangular triangle having its hypotenuse 2a. 

i 11 

The celebrated philosopher of the antiquity Platon (-1:27 - :3-1: '/ B. C.) was greatly 
interested in :'vlathematics, especialy in connections with the so called "solid num
bers", that is numbers of the form 

a·b·c 

representing a volume. 
This sympathy is also due to a famous event even today. 
In the Greek city Athens there was an epidemic diseare that killed many peo

ples. The inhabitants anced the oracle of Delphi (a town in Delos, the smadest of 
the Ciclade isles) what to do in order to save themselves. 
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The gods asked the prierts of the temple to replace their cubic altar vvith a 
new one having a double volume. 

The prierts appealed to the greatest mathematicians of the time to get the 
solution. 

The problem is to calculate the lenght x of the side of a cube such that 

That is 

But the peoples of those times didn't know any method to calculate. not e\'en 
approximatively, the radicals over to t\vo. Only in the fifth century A .. D. the 
Indians used the approximation in order to extract the cubic root: 

, 3 . b) 1 b fa"':'" r:::;:a"':"'\. , 3a2 

where a3 is the greatest perfect cube not exceding the number a3 + b. 
The problem (3) can't be solved using only the rule and the compasses. 
Let us observe that this problem is a particular problem on solid numbers. and 

of course it is unsolvable by of only one proportion of kind (2). 
However Platon observed that this problem could be solved using tu'o propor

tions. ); amely, he affirmed that: 
Theorem of Platon. ~Vhile one simple proportion is enought to connect tu.:o 

plane numbers (numbers of the form a . b), three proportions are necessary to 

connect tu'oo solide numbers. 
The solution of the problem of Delos is then obtained by Platon approxima

ti vely wri ting 

a x y 

x y 2a 

Indeed, from (-1:) we obtain 

so x3 = 2a3
. 

Platon and others Archytas of Tarent ('" 380 B.C.), Eudoxus (-1:08 - :3.j.j B.C.). 
Appollonios of Perga 260 - liO B.C.)] imaginated approximate solutions of the 
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equation (~), rather difficult, which, of course, could be simplified in the course 
of time. 

Today, we can easily find an approximate solution to the system (.5) through 
drawning the two parabolas or intersecting one of these parabolas with the circle 

x 2 + y2 _ 2ax - ay = 0 

obtained through adding the equations of the two parabolas. 

2. A method to construct convergent sequences 

The name of Leonard Euler (1707 - 1783) is knovm amoung the young people 
loving mathematics, especially because of the sequence given by 

1 1 1 
a = 1 ...L - + - ...L ...L - - In n n I 2 . 3 ' .... n 

It is said that this sequence is monotonous and bounded, convergmg to a 
constant! E (0,1), known as Euler's constant. 

This constant appears in many occasions in mathematics. For instance if d( n) 
is the number of (positive) divisors of the positive integer n, then it is proved that 

1 n - L d(i) ~ In n + 2~f - 1 
n i=l 

Considering the sequence (6) and proving his convergence Euler has etablished 
a connection between the following two sequences 

1 1 
On = 1 ...L 2" + ... -+-; and en = In n 

both converging to infinity. 
To prove the monotonicity and boundness of the sequence (an)'1.E.V8 it is used 

a well known theorem. does to the count Luis de Lagrange (1736 - lS13). This 
method may be generalised in the following way: 
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Proposition. Let f : [1, Xl) ----1- R a derivable function u'ith the property that 

f and I' are monotonous, but of different monotonicity (that is either f increase 
and I' decrease or f decrease and I' increase). 

Then the sequence 

In = 1'(1) + 1'(2) + ... + I'(n) - f(n) 

is convergent. 
Proof. The proof is analogous with that of Euler's sequence (6). 
Indeed, let us suppose that f is increasing and I' is decreasing. 

monotoncity of the sequence (x n )nEN8 we obtains: 

In+l - Xn = f'(n + 1) - (f(n + 1) - f(n)) 

',r_) I I 
\ 

For the 

and applying the theorem of Lagrange to the function f on the interval [k. k -:- 1] 
it results: 

(::i) Ck E (k, k + 1) such that f(k + 1) - f(k) = I'(Ck) (8) 

and 

k < Ck < k + 1 =::=;. I' ( k) > I' ( c,,) > I' ( k + 1) 

so 

In+l - In = I'(n + 1) - f'(cn ) < 0 

because I' is decreasing. 

9) 

\'ie have now to find a lower bound of the sequence (7). 
implication (9) for every k = 1,2 ..... and we get: 

For this we write the 

So. 

1 < Cl < 2 ===:;- 1'( 1 > 1'( cd > 1'(2) 
2 < C2 < :3 ====> I' (2) > f' ( C2) > I' (:3 ) 

n < Cn < n + 1 ====> I'(n) > I'(crt ) > f'(n + 1) 

-f'(l) ' j"I")) ' ,£II) t:(» In - "T ,-( 7···7 J I,n, - J n/ 
> f 'l ' , t:" \ 'f'() f(' \ Cd ....... J \ C2) ....... '" 7 en - n) 

Writing no\v the equalities (8) for k = 1. 2 . ... n and adding. it results: 
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J' ( Cl) + J' ( C2) + ... + J' ( Cn ) = f (n + 1) - f ( 1 ) 

SO Xn ~ f(n -:- 1) - f(l) - f(n) > - f(l) because f is increasing. 
Of course, the limit point of this sequence is between - f(l) and Xl = f'U)

f( 1). 
This proposition permet to construct many convergent sequences of the form 

( 7) 
Indeed, 
1) considering the increasing function f(x) = 'lvI, whose derivative fix) = 

1/ vI is decreasing, it results that the sequence 

1 1 1 -1' , 'T ·)c Xn - -;- -= -;- j7) -;- .•• -;- r::: - ~v n 
y'2 v:3 v n 

has a limit point IE [-2, -1]. 
2) considering the function f(x) = In(1nx) it results that the sequence 

111 
Xn =::;--1 .) + :---31 . + ... + -1- - In(ln n) 

~ n ~ . n:3 n n n 

is convergent to a point IE [-In(ln2), 2~2 -In(ln:2)]. 
:3) the sequence 

1') 1'3 1 _ .) ( n ~ .n " . n n ) 1 2 
Xn - ~ - + - -;- ... "7" -- - n n 

:2:3 n 

as well as 

In< 2 lni: :3 lni: n lni:+l n 
x =--+---'- -'-------

n :2 :3 I'" t n k + 1 

are convergent sequences, and, of course. the reader may construct himself many 
other convergent sequences, using the same method. 

It is interesting to mentione that by means of the same way as in the proof of 
the above proposition it may be proved the follow'ing curious inequalities: 

111 
1998 < 1 -;- -= + j7) -+- ... T ~ < 1999 

yI:2 v:3 vI06 

and. more generaL 

15 



,111· 
'J. 10" - ') < 1 ...l- - ...l- - ...l-...l- < :2 . 10" - 1 
- - I J2 I J3 I ... I J102k 

or these 

P " , 1 1 1 p , --I a,,(p-l) _ 1) < 1 + -~- -+- -_ ...l-...l- < __ ( a~(p-l) _ ~) 
1 \ ~ . "II I '3' / ,"', ( . q I ' P - .;:: I P • - P 1\ aP''') I P P - 1 . p 

3. The Problem of Titeica 

The Romanian mathematician Gh. Titeica (lSi3 - 19:39) while in a W2.ltlI:g 
room and because time hardly passed, started dravv'ing circles on a newspaper 

. . . 
margm, usmg a com. 

In this playing with it, he begun to move the coin so that it have a fixed point 
on the circumference of a cercle. Because he had to wait for a long while. he had 
the time to find out that drawing three circles in which the coin had a fixed point 
on the circumference, the circles intersected two by two in three points calkd A. 
B. and C) over \vhich the coin was exactly superposed. 

Of course, the three points .4 .. B, and C make a circle. The novelty was that 
this circle seemed to have the same radius as the circles dra,.vn with the coin. 

\Vhen he reached home, Titeica proved that indeed: 
The Problem of Titeica. If three circles of the same radiu.s r have a com

mon fixed point _'vI, they still intersect two by two in the points A, B. C /L·hich. make 
another circle with the same radius r. 

Proof. Because we have JIC1 = _'vIC2 = JIC) (see figure below) it cesults 
that _\1 is the centre of the circumscribed circle of the triangle determined by the 
points Ct. C21 C3 • 

\'ow. it is sufficient to prove the equality (congruence) between this triangle 
and the triangle determined by the points A.. B 1 C. 

vVe have: 
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AB = C2C3 (because .6.AC1B = .6.C2C'C(3) 

AC == C1 C3 (because .6.AC2C == .6.C[ BC3 ) 

BC = C1 C2 (because .6.BC3C == .6.C[AC2 ) 

and the theorem is proved. 

4. Hexagons in Pascal's Triangle 

The hexagon AC2CC3BC't used in the proof of the problem of Titeica is in 
connection with some cercles. :';ow we shall make in evidence other hexagons. this 
time lied with a triangle. the celebrate triangle of Pl7.scl7.l. 

In 16.54: Blaise Pascal (162:3 - 1662) published the paper "On an ArithmetIcal 
Triangle" in which studied the properties of the numbers in the triangle 



1 
1 2 1 

1 3 :3 1 
1 4 6 4 1 

1 ,S 10 10 5 1 

constructed such that the n - row contains the elements 

n ( ~ ) , ( 7 ) '"""' ( k ~ 1 ) , ( ~ ) , ( k+1 
where 

( ~ ) - k~(n ~ k)~ 
In the sequel \ve shall focus the attention on the following elements in this 

triangle: 

( n - 1 ) 
k - 1 

( n ) ( ~ ) k - 1 

( n+l ) k 

for simplicity we note 

A= 

50 it results the configuration 

A F 

B x 

C D 

18 

( 

( 

n-1 
k 

n...J..l 
k+l 

n+1 
k 

and 

E 

) 
( n ) k+l 

) 

\) D=(n+l) , k...:.. 1 

x=(~) 



The multiplicative equality 

A.·C·E=B·D·F 11' \ ~ lJ 

was found by V. E. Hoggatt Jr. and W. Hansell [.5]. Therefore this configuration 
is called" Hoggat-Hansell perfect square hexagon". 

This hexagon has also the following interesting property, found in [2]: 

g.c.d.(A., C, E) = g.c.d.(B, D, F) 

where g.c.d. is the abreviation for the greatest common divisor. 
The identities (11) and (12) are the first two non-trivial exarr..ples of translat

able identities of binomial coefficients and are called "the Star of David theorem ". 
The lower common multiple (I.c.m.) counterpart of the identity (12), namely 

I.c.m.(A., C, E) = I.c.m.(B, D, F) (U) 

does not hold on Pascal's triangle and it has been a long-standing open question 
wheter there exists any mathematically non-trivial and/or artistically interesting 
configurations which give a translatable l.c.m. identity of type (12). 

S. Ando and D. Sato have proved [2] that the answer to this question is·'yes·'. 
They have proved that: 

Theorem. (Pisa triple equality theorem) There exists a configuration lchich 
gi~'es simultaneously equal product. equal g.c.d. and eqlwl l.c.m. properties on bi
nomial, Fibonacci-binomial and their modified coefficients. 

A Fibonacci-binomial coefficient (or Fibonomial-coefficient) is the number de
fined by: 

,[ ~ 1 = ___ F_1_·_F_2 ._ .• F_n __ _ 

Fl . Fl···F", . Fl . F2···Fn - k 

where F: is the i - th Fibonacci number. i.e. 

Fl = F2 = L F,,+2 = F" + F,,+l, for n = 1,2, ... 

All Fibonomial coefficients are positive integers. and the triangular array of 
these numbers has a structure similar to Pascal's triangle. 

A. P. Hilmann and V. E. Hoggatt Jr. investigated the similarities with Pascal's 
triangle and showed that the original Star of David theorem also holds on this 
Fibonacci version of the Pascal-like triangle. 

19 



The modified binomial coefficient is defined as 

{
n} (n~l)~ I, (n) 
k =k~(n_k):=I,n-t-1) k 

It is proved that the translatable product and l.c.m. equalities, similar to (ll) 
and (13), but not the g.e.d. equality (12), hold for the array of modified binomial 

fh' coe • .LlClents. 
The two Pascal like number array can be combined further to define the mod

ified Fibonacci coefficient, given by: 

( 
n ) Fl . F2 ... Fn+l r n Jl 

k - Fl' F'J. ... FI; . Fl . F2 ... Fn- k = Fn+l l k 

S. Ando and D. Sato announced at the third International Conference on 
Fibonacci ,Vumbers and their A.pplications (held in Pisa, Italy, July 25 -29, 1988) 
some interesting results concerning g.c.d. and l.e.m. properties on configurations 
like these reproduced below. vVe mention here only the following: 

Theorem (Sakasa - Fuji quadruple equality theorem). The configuration of 
Fujiyama (see below) has equal g.c.d. and equall.c.m. properties on Fibonacci -
Pascal's triangle, while its upside down configuration (called SAKASA - F[JJI. in 
japonese) has equal g.e.d. and equal l.e.m. properties on modifies PascaLi and 
modified Fibonacci - Pascal '$ triangle. 

Theorem CCniversal equality theorem). The Julia's snou:fiake and it5 upside 
down configuration both give translatable simultaneously equal product (symbolised 
below by the Greek letter II), equal g.e.d. and equal l.c.m. properties on Pa5ca/"., 
triangle, Fibonacci - Pascal '$ triangle and modified Fibonacci - Pascal's triangle 

vVe reproduce here, after [2] these configurations. 
S. Ando and D. Sato in their paper explained with amability the terminology 

used for these configurations. 
Thus one of the configurations is named in memoriam of Professor Julia Robin

.5on for the friendship and support given to the authors during many years of 
mathematical associations. 

Fujiyama is a highly symetric triangular mountain near Tokio, and Saskatcheu'an 
is a name of a province in western Canada, \vhere the first non - trivial mutualy 
exclusive equal :J.c.d. - I.c.m. configuration was constructed. 
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5. The Smarandache Function 

This function is originated from the exiled Romanian Professor Florentin 
Smarandache and it is defined as follows: 

For any non - null n. S(n) is the smallest integer such that S(n)~ is dirisible byn. 

To calculate the value of S(n), for a given n. we need to use twoo numerical 
scale, as we shall see in the following. 

A strange addition. A (standard) numerical scale is a sequence 

(h) : 1, aI, a2, ... ,ai, ... 

\,,' here ai = hi. for a fixed h > l. 
By means of such a sequence every integer n E S may be writen as 

and we can use the notation 

n(h) =.pI.;.pI.;-I·"'.pO 

The integers .pi are called" digits" and veri fie the inequalities 

a ~ .pi ~ h - 1 

(1-1:) 

For the scale given by the sequence (14) it is trouth the recurence relation 

i1.5) 

\vhich permet numerical calculus. as additions. substractions. etc. 
The standard scale (14) was been generalised. considering an arbitrary incre

as.51ng seq'tLence: 
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and knowing a corresponding recurence relation. 
For instance the Fibonacci sequence: 

FI = 1, F2 = 2, and Fi+l = Fi + Fi - 1 

is such a generalised scale, for which the digits are only the integers 0 and l. 
Another generalised numerical scale is the scale defined by the sequence: 

with 

and p a prime number. 

pi _ 1 
bi =-

p-1 

This scale verifies the recurence 

bi+l = P . bi + 1 

and is used in the calculus of Smarandache function. 

(16) 

(1 T) 

(18) 

Let us observe that because of the diference between the recurences (15). and 
(IS) we have essentially different ruls for the calculus in the scale [Pl. To ilustrate 
these differences let we consider the generalised scale [.5]: 

[.5J : 1, 6. :31, 156, ... 

and the integer m = 150(10), which becomes mrs] = 442. in the scale [.5]. Indeed. 
because 

ai(.5) ~ 1.50 ¢=:;- (pi - 1)/(p - 1) ~ 1.50 ¢=:;- pi ~ 1.50(p - 1) + 1 ¢=:;

¢=:;- i ~ logs (l50(p - 1) + 1) 

it results that the greatest a;(.S) for which a;(.S) < 150 is a3('S) = :31. Then 
the first digj t of the number m[.s] is 
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so, 150 = 4a3(5) +26. 
For ml = 26 it results that the greatest ai(5) for which ai(5) ::; 26 is a2(.s) = 6 

and the corresponding digit is: 

so, 150 = 4a3(5) + 4a2('S) + 2 = 442[5]' 
If we consider in addition the numbers: 

then 

n[5] = 412, r[5] = 44 

m + n + r = 442+ 
412 

4-l 
dcba 

From the recurence (IS) it results that we need to start the addition from the 
column corresponding to a2(5): 

~ow, using an unit from the first collumn it results: 

.sa2(·S) + 4a2(·5) = a3(.s) + -la2CS), so b = 4 

Continuing, 4a3(.s) + 4a3(.s) + a3(5) = 5a3(5) + 4a3(5) and using a new unit 
from the first collumn it results 

4a3(·5) + 4a3(.s) + a3(.s) = a4(·5) + ..1,a3(5), so c = 4 and d = 1 

Finally, adding the remainder units, 4al(-S)+2ar(5) = .5ad·5)+al(.s) = .Sal(·S)-+' 
1 = a2(5), it results that b must be modified and a = O. So, m + n +- r = 14.50[5]' 

A.n other particularity for the calculus in the scale [PJ results from the fact 
that in this scale the last non-::ero digit may be even p. This particularity is a 
consequence of the recurence relation (18). 

Which are the numbers with the factorial ending in 1,000 zeros? The 
answer to this question is in a strong connection with the Smarandache function. 
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For this reason let us observe first that if 

_ Cil Ci2 a, 
n - PI . P2 ····Pt (19) 

is the decomposition of a given positive integer n into primes, then a.s a.n imediate 
consequence of the definition of 5 it results 

5(n) =max (S(pfi)) 
,=I.t 

(20) 

~ow, for n = 101.000 it results that S( n)~ is a multiple of 101.000 and it is the 
smallest positive integer with this property. 

\Ve have 

Indeed, for the calculus of 5(pa) we can use the formula: 

5(pa) = p( Q[P])(p) 

which signify that the value of the function S for pa is obtained multiplying by 
p the number obtained writting the exponent Q in the generalised scale [P] and 
reading it in the scale (p). 

So, we have: 

5 (·)1.000) - ')((1 000)· .j .. - ·)((1 1 11 11 1 00\··L - :;OQ 
\"'" -_.1., [2J/(2)-'" \.1. J.. .1. J[2JJ(2)-V v 

5(.51.000) = .s( 11201[5] )(5) = 400.s 

and it results that n. = 400·5 is the smallest. positive int.eger who's factoria.l end in 
L 000 zeros. 

The next integers with this property a·re 4006, 4007, 4008, and 4009. hf'ca.use 
the factorial of 4010 has 1. 001 zeros. 

Smarandache magic square. For n 2: ::2 let A, be a set of n 2 elements and 
l a n-arry law defined on A. The 5marandache magic square of order n is a 2 
square array of rows of elements of A arranged so that the law l applied to each 
horizontal and vertical row and diagonal give the same result. 

.Hike R . .11 udge, considering such squares. poses the following questions (see 
Smarandache Function JournaL Vol. 7. ~o. 1. 1996): 

1) Can you find such magic square of order at least :3 or -1:. when A is a set of 
prime numbers and I the addition',' 
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2) Same question when A is a set of square numbers, or cube numbers, or 
special numbers. For example Fibonacci or Lucas numbers, triangular numbers, 
Smarandache quotients (i.e. q( m) is the smallest k such that mk is a factorial). 

An interesting law may be 

)iow some examples of Smarandache lvfagic Squ.are: 
If A is a set of prime numbers and I is the operation of addition such magic 

squares, with the constant in brackets, are: 

8:3 89 41 101 491 251 -, I. 461 :311 
29 il 113 431 281 1:31 ·321 281 41 
101 5:3 59 311 71 461 2.31 101 491 

(213) (843) (84:3) 

97 907 .557 :397 197 
113 149 y- I 367 167 67 877 677 _01 

I, :317 17:3 29 997 647 :3:37 1:37 :37 
89 197 2:33 107 1·57 967 617 307 

(519) I .587 .)--
_II 227 127 9:37 

(21.55) 

The multiplication magic square 

18 1 12 
4 6 9 
:3 :36 2 

(216) 

is such that the constant 216 may be obtained by multiplication of the elements 
in any row/column/principal diagonal. 

A. geometric magic square is obtained using elements which are a given base 
raised to the powers of the corresponding elements of a magic square it is clea.rly 
a multiplic:ation ma.gic squa.re. 

FOT instance, considering 

8 1 6 i 256 2 64 
:3 ·5 - S :32 128 I 

and base 2 it results 
4 9 2 16 512 4 

(lS) (215 ) 
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Talisman .Hagic Squarf'.5 are a. relatively ne"'" concept. conta.in the integers from 
1 to n2 in such a way that the difference between a...'1y integer and its neighbours 
(either rou'-, column-. or diagonal-1.rise) is greather than some given constant: 

.5 15 9 12 
10 1 6 3 
13 16 11 14 
2 8 4 7 

en 
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