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Abstract In this paper Smarandache ν−connectedness and Smarandache locally

ν−connectedness in topological space are introduced, obtained some of its basic properties

and interrelations are verified with other types of connectedness.
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§1. Introduction

After the introduction of semi open sets by Norman Levine various authors have turned
their attentions to this concept and it becomes the primary aim of many mathematicians to
examine and explore how far the basic concepts and theorems remain true if one replaces
open set by semi open set. The concept of semi connectedness and locally semi connectedness
are introduced by Das and J. P. Sarkar and H. Dasgupta in their papers. Keeping this in
mind we here introduce the concepts of connectedness using ν−open sets in topological spaces.
Throughout the paper a space X means a topological space (X, τ). The class of ν−open sets is
denoted by ν−O(X, τ) respectively. The interior, closure, ν−interior, ν−closure are defined by
Ao, A−, νAo, νA− respectively. In section 2 we discuss the basic definitions and results used in
this paper. In section 3 we discuss about Smarandache ν−connectedness and ν−components
and in section 4 we discuss locally Smarandache ν−connectedness in the topological space and
obtain their basic properties.

§2. Preliminaries

A subset A of a topological space (X, τ) is said to be regularly open if A = ((A)−)o, semi
open(regularly semi open or ν−open) if there exists an open(regularly open) set O such that
O ⊂ A ⊂ (O)− and ν−closed if its complement is ν−open. The intersection of all ν−closed
sets containing A is called ν−closure of A, denoted by ν(A)−. The class of all ν−closed sets are
denoted by ν−CL(X, τ). The union of all ν−open sets contained in A is called the ν−interior
of A, denoted by ν(A)o. A function f : (X, τ) → (Y, σ) is said to be ν−continuous if the inverse
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image of any open set in Y is a ν−open set in X; said to be ν−irresolute if the inverse image of
any ν−open set in Y is a ν−open set in X and is said to be ν−open if the image of every ν−open
set is ν−open. f is said to be ν−homeomorphism if f is bijective, ν−irresolute and ν−open.
Let x be a point of (X, τ) and V be a subset of X, then V is said to be ν−neighbourhood of x

if there exists a ν−open set U of X such that x ∈ U ⊂ V . x ∈ X is said to be ν−limit point
of U iff for each ν−open set V containing x, V ∩ (U − {x}) 6= φ. The set of all ν−limit points
of U is called ν−derived set of U and is denoted by Dν(U). union and intersection of ν−open
sets is not open whereas union of regular and ν−open set is ν−open.

Note 1. Clearly every regularly open set is ν−open and every ν−open set is semi-open
but the reverse implications do not holds good. that is, RO(X)⊂ ν −O(X) ⊂SO(X).

Theorem 2.1. (i)If B ⊂X such that A ⊂ B ⊂ (A)− then B is ν−open iff A is ν−open.
(ii)If A and R are regularly open and S is ν−open such that R ⊂ S ⊂ (R)−. Then A∩R = φ

⇒ A ∩ S = φ.

Theorem 2.2. (i) Let A ⊆ Y ⊆ X and Y is regularly open subspace of X then A is
ν−open in X iff A is ν−open in τ/Y .
(ii)Let Y ⊆ X and A ∈ ν −O(Y, τ/Y ) then A ∈ ν −O(X, τ) iff Y is ν−open in X.

Theorem 2.3. An almost continuous and almost open map is ν−irresolute.

Example 1. Identity map is ν−irresolute.

§3.ν−Connectedness.

Definition 3.01. A topological space is said to be Smarandache ν−connected if it cannot
be represented by the union of two non-empty disjoint ν−open sets.

Note 2. Every Smarandache ν−connected space is connected but the converse is not true
in general is shown by the following example.

Example 2. Let X = {a, b, c} and τ = {φ, {a}, X}; then (X, τ) is connected but not
ν−connected

Note 3. Every Smarandache ν−connected space is r-connected but the converse is not
true in general is shown by the following example.

Example 3. Let X = {a, b, c} and τ = {φ, {a}, {b}, {a, b}, X} then (X, τ) is r-connected
but not Smarandache ν−connected

similary one can show that every semi connected space is Smarandache ν−connected but
the converse is not true in general.
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Theorem 3.01. Let (X, τ) and (Y, σ) be two topological spaces. If f : (X, τ) → (Y, σ)
is a ν−open and ν−continuous mapping, then the inverse image of each ν−open set in Y is
ν−open in X

Corollary 3. Let (X, τ) and (Y, σ) be two topological spaces. If f : (X, τ) → (Y, σ) is an r-
open and r-continuous mapping, then the inverse image of each ν−open set in Y is ν−open in X

Theorem 3.02. If f : (X, τ) → (Y, σ) is a ν−continuous mapping, and (X, τ) is Smaran-
dache ν−connected space, then (Y, σ) is also ν−connected.

Corollary 4. If f : (X, τ) → (Y, σ) is a r-continuous mapping, and (X, τ) is Smarandache
ν−connected space, then (Y, σ) is also Smarandache ν−connected.

Theorem 3.03. Let (X, τ) be a topological space and
(i) A be ν−open. Then A is Smarandache ν−connected if and only if (A, τ/A) is Smarandache
ν−connected
(ii) A be r-open. Then A is Smarandache ν−connected if and only if (A, τ/A) is Smarandache
ν−connected

Lemma 3.01.If A and B are two subsets of a topological space (X, τ) such that A ⊂ B

then ν(A)− ⊂ ν(B)−

Lemma 3.02. If A is ν−connected and A ⊂ C ∪D where C and D are ν−separated, then
either A ⊂ C or A ⊂ D.

Proof. Write A = (A ∩ C) ∪ (A ∩ D). Then by lemma 3.01, we have (A ∩ C) ∩
(ν(A)− ∩ ν(D)−) ⊂ C ∩ ν(D)−. Since C and D are ν−separated, C ∩ ν(D)− = φ and so
(A∩C)∩ (ν(A)− ∩ ν(D)−) = φ. Similar argument shows that (ν(A)− ∩ ν(C)−)∩ (A∩D) = φ.
So if both (A ∩ C) 6= φ and (A ∩D) 6= φ, then A is not Smarandache ν−connected, which is a
contradiction for A is Smarandache ν−connected. Therefore either (A∩C) = φ or (A∩D) = φ,
which in turn implies that either A ⊂ C or A ⊂ D.

Lemma 3.03. The union of any family of Smarandache ν−connected sets having non-
empty intersection is a Smarandache ν−connected set.

Proof. If E = ∪Eα is not ν−connected where each Eα is Smarandache ν−connected, then
E = A ∪B, where A and B are ν−separated sets. Let x ∈ ∩Eα be any point, then x ∈ Eα for
each Eα and so x ∈ E which implies that x ∈ A∪B in turn implies that either x ∈ A or x ∈ B.

Without loss of generality assume x ∈ A. Since x ∈ Eα, A ∩ Eα 6= φ for every α. By
lemma 3.02, either each Eα ⊂ A or each Eα ⊂ B. Since A and B are disjoint we must have
each Eα ⊂ A and hence each E ⊂ A which gives that B = φ.

Lemma 3.4. If A is Smarandache ν−connected and A ⊂ B ⊂ ν(A)−, then B is Smaran-
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dache ν−connected set.

Proof. If E is not ν−connected, then E = A ∪ B, where A and B are ν−separated
sets. By lemma 3.02 either E ⊂ A or E ⊂ B. If E ⊂ A, then ν(E)− ⊂ ν(A)− and so
ν(E)− ∩B ⊂ ν(A)− ∩B = φ. On the other hand B ⊂ E ⊂ ν(E)− and so ν(E)− ∩B. Thus we
have B = φ, which is a contradiction. Hence the Lemma.

Corollary 5. If A is Smarandache ν−connected and A ⊂ B ⊂ (A)−, then B is Smaran-
dache ν−connected set.

Lemma 3.5. If f : (X, τ) → (Y, σ) is ν−open and ν−continuous, A ⊂ X is ν−open. Then
if A is ν−connected, f (A) is also Smarandache ν−connected.

Proof. Let f : (X, τ) → (Y, σ) is open and ν−continuous, A ⊂ X be open. Since A

is ν−connected and open in (X, τ), then (A, τ/A) is also ν−connected (by Th. 3.03). Now
f/A : (A, τ/A) → (f(A), σf(A)) is onto and ν−continuous and so by theorem 3.02 f(A) is also
ν−connected in (f(A), σf(A)). Now for f is open, f (A) is open in (Y, σ) and so by theorem 3.03,
f (A) is Smarandache ν−connected in (Y, σ)

We have the following corollaries from the above theorem

Corollary 6. If f : (X, τ) → (Y, σ) is r-open and r-continuous, A ⊂ X is r-open. Then if
A is ν−connected, then f (A) is also Smarandache ν−connected.

Corollary 7. If f : (X, τ) → (Y, σ) is ν−open and ν−continuous, A ⊂ X is r-open. Then
if A is connected, then f (A) is also Smarandache ν−connected.

Definition 3.02. Let (X, τ) be a topological space and x ∈ X. The ν−component of x,
denoted by ν C(x), is the union of Smarandache ν−connected subsets of X containing x.

Further if E ⊂ X and if x ∈ E, then the union of all ν−connected set containing x and
contained in E is called the ν−component of E corresponding to x. By the term that C is a
ν−component of E, we mean that C is ν−component of E corresponding to some point of E.

Lemma 3.06. Show that νC(x) is Smarandache ν−connected for any x ∈ X

Proof. As the union of any family of Smarandache ν−connected sets having a non-
empty intersection is a Smarandache ν−connected set, it follows that νC(x) is Smarandache
ν−connected

Theorem 3.04. In a Topological space (X, τ),
(i) Each ν−component ν(x) is a maximal Smarandache ν−connected set in X.
(ii) The set of all distinct ν−components of points of X form a partition of X and (iii) Each
ν(x) is ν−closed in X

Proof. (i) follows from the definition 3.02
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(ii) Let x and y be any two distinct points and νC(x) and νC(y) be two r-components of x

and y respectively. If νC(x) ∩ νC(y) 6= φ, then by lemma 3.03, νC(x) ∪ νC(y) is Smarandache
ν−connected. But νC(x) ⊂ νC(x) ∪ νC(y) which contradicts the maximality of νC(x).

Let x ∈ X be any point, then x ∈ νC(x) implies ∪{x} ⊂ ∪νC(x) for all x ∈ X which
implies X ⊂ ∪νC(x) ⊂ X. Therefore ∪νC(x) = X

(iii) Let x ∈ X be any point, then (νC(x))− is a ν−connected set containing x. But νC(x) is
the maximal Smarandache ν−connected set containing x, therefore (νC(x))− ⊂ νC(x). Hence
νC(x) is ν−closed in X.

§4. Locally ν−connectedness

Definition 4.01. A topological space (X, τ) is called
(i) Smarandache locally ν−connected at x ∈ X iff for every ν−open set U containing x, there
exists a Smarandache ν−connected open set C such that x ∈ C ⊂ U .
(ii) Smarandache locally ν−connected iff it is Smarandache locally ν−connected at each x ∈ X.

Remark 3. Every Smarandache locally ν−connected topological space is Smarandache
locally connected but converse is not true in general.

Remark 4. Smarandache local ν−connectedness does not imply Smarand-
ache ν−connectedness as shown by the following example.

Example 4. X = {a, b, c} and τ = {φ, {a}, {c}, {a, b}, {a, c}, X} then (X, τ) is Smaran-
dache locally ν−connected but not Smarandache ν−connected.

Remark 5. Smarandache ν−connectedness does not imply Smarand-
ache local ν−connectedness in general.

Theorem 4.01. A topological space (X, τ) is Smarandache locally ν−connected iff the
ν−components of ν−open sets are open sets.

Theorem 4.02. If f : (X, τ) → (Y, σ) is a ν−continuous open and onto mapping, and
(X, τ) is Smarandache locally ν−connected space, then (Y, σ) is also locally Smarandache
ν−connected.

Proof. Let U be any ν−open subset of Y and C be any ν−component of U, then f−1(U)
is ν−open in X. Let A be any ν−component of f−1(U). Since X is locally ν−connected and
f−1(U) is ν−open, A is open by theorem 4.01. Also f (A) is ν−connected subset of Y and since
C is ν−component of U , it follows that either f(A) ⊂ C or f(U) ∩ C = φ. Thus f−1(C) is the
union of collection of ν−components of f−1(U) and so f−1(C) is open. As f is open and onto,
C = f ◦ f−1(C) is open in Y . Thus any ν−component of ν−open set in Y is open in Y and
hence by above theorem Y is Smarandache locally ν−connected.
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Corollary 8. If f : (X, τ) → (Y, σ) is a r-continuous r-open and onto mapping, and (X, τ) is
Smarandache locally ν−connected space, then (Y, σ) is also Smarandache locally ν−connected.

Proof. Immediate consequence of the above theorem.

Note 4. semi connectedness need not imply and implied by locally semi connectedness.
Similarly a Smarandache ν−connected space need not imply and implied by Smarandache lo-
cally ν−connected in general.

Theorem 4.03. A topological space (X, τ) is Smarandache locally ν−connected iff given
any x ∈ X and a ν−open set U containing x, there exists an open set C containing x such that
C is contained in a single ν−component of U.

Proof. Let X be Smarandache locally ν−connected, x ∈ X and U be a ν−open set
containing x. Let A be a ν− component of U containing x. Since X is Smarandache locally
ν−connected and U is ν−open, there is a Smarandache ν−connected set C such that x ∈ C ⊂
U . By theorem 3.01, A is the maximal Smarandache ν−connected set containing x and so
x ∈ C ⊂ A ⊂ U . Since ν−components are disjoint sets, it follows that C is not contained in
any other ν−component of U .

Conversely, suppose that given any point x ∈ X and any ν−open set U containing x, there
exists an open set C containing x which is contained in a single ν−component F of U . Then
x ∈ C ⊂ F ⊂ U . Let y ∈ F , then y ∈ U . Thus there is an open set O such that y ∈ O

and O is contained in a single ν−component of U . As the ν−components are disjoint sets
and y ∈ F, y ∈ O ⊂ F . Thus F is open. Thus for every x ∈ X and for every ν−open set
U containing x, there exists a Smarandache ν−connected open set F such that x ∈ F ⊂ U .
Thus (X, τ) is Smarandache locally ν−connected at x. Since x ∈ X is arbitrary, (X, τ) is
Smarandache locally ν−connected.

Remark 6.
Connected ⇐ semi-connected

⇓ ⇓

r-Connected ⇐ ν−Connected.

none is reversible

Example 5. FOR X = {a, b, c, d}; τ1 = {φ, {b}, {a, b}, {b, c}, {a, b, c}, X}
τ2 = {φ, {a}, {b}, {a, b}, X} and τ3 = {φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X}

(X, τ1) is both r-connected and Smarandache ν−connected; (X, τ2) is r-connected but not
Smarandache ν−connected and (X, τ3) is neither r-connected and nor Smarandache ν−connected

Conclusion.

In this paper we defined new type of connectedness using ν−open sets and studied their
interrelations with other connectedness.
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§1. Introduction

Similar to rpp rings, a semigroup S is called an rpp semigroup if for any a ∈ S, aS1 regarded
as a right S1 system is projective. In the study of the structure of rpp semigroups, Fountain[1]
considered a Green-like right congruence relation L∗ on a semigroup S defined by (a, b ∈ S)aL∗b
if and only if ax = ay ⇔ bx = by for all x, y ∈ S1. Dually, we can define the left congruence
relation R∗ on a semigroup S. It can be observed that for a, b ∈ S, aL∗b if and only if aLb

when S is a regular semigroup. Also, we can easily see that a semigroup S is an rpp semigroup
if and only if each L∗-class of S contains at least one idempotent. Later on, Fountain[2]called
a semigroup S an abundant semigroup if each L∗-class and each R∗-class of contain at least
one idempotent. An important subclass of the class of rpp semigroups is the class of C-rpp
semigroups. We call an rpp semigroup S a C-rpp semigroup if the idempotents of S are central.
It is well known that a semigroup S is a C-rpp semigroup if and only if S is a strong semilattice
of left cancellative monoids (see [1]). Because a Clifford semigroup can always be expressed as
a strong semilattice of groups, we see immediately that the concept of C-rpp semigroups is a
proper generalization of Clifford semigroups. Guo-Shum-Zhu [3] called an rpp semigroup S a
strongly rpp semigroup if every L∗a contains a unique idempotent a+ ∈ L∗a ∩ E(S) such that
a+a = a holds, where E(S) is the set of all idempotents of S. They then called a strongly
rpp semigroup S a left C-rpp semigroup if L∗ is a congruence on S and eS ⊆ Se holds for any
e ∈ E(S. It is noticed that the set E(S) of idempotents of a left C-rpp semigroup S forms a
left regular band, that is,ef = efe for e, f ∈ E(S). Because of this crucial observation, we can
describe the left C-rpp semigroup by using the left regular band and the C-rpp semigroup.The
structure of left C- rpp semigroups and abundant semigroups has been investigated by many
authors (see[4-12], In particular, it was proved in [3] that if S is a strongly rpp semigroup whose
set of idempotents E(S) forms a left regular band, then S is a left C-rpp semigroup if and only
if S is a semilattice of direct products of a left zero band and a left cancellative monoid, that
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is, the left C-rpp semigroup S is expressible as a semilattice of left cancellative strips.
Let S be a semigroup, A a subset of S and let

σ =


 1 2 · · · n

σ(1) σ(2) · · · σ(n)




a non-identity permutation on n objects. Then a semigroup A is said to satisfy the permutation
identity determined by σ (in short, to satisfy a permutation identity if there is no ambiguity )
If (∀x1, x2, · · · , xn ∈ A)x1x2 · · ·xn = xσ(1)xσ(2) · · ·xσ(n) , Where x1x2 · · ·xn is the product of
x1, x2, · · · , xn in S. If A = S, then S is called a PI- semigruop. Guo[13] investigated abun-
dant semigroups whose idempotents satisfy permutation identities,and the quasi-spined prod-
uct structure of such semigroups was established. In particular, the structure of PI-abundant
semigroups was obtained. Later,Guo[14] again discussed strongly rpp semigroups whose idem-
potents satisfy permutation identities,Du-He[15]obtained the structure of eventually strongly
rpp semigroups whose idempotents satisfy permutation identities.

By modifying Green’s star relations, Kong-Shum[16] have introduced a new set of Green’s
#-relations on a semigroup and by using these new Green’s relations, they were able to give a
description for a wider class of abundant semigroups, namely, the class of #- abundant semi-
groups(see[16]). As a generalization of rpp semigroups whose idempotents satisfy permutation
identities, the aim of this paper is to investigate Smarandache #-rpp semigroups whose idem-
potents satisfy permutation identities,that is,PI- #-rpp.

For terminology and notations not give in this paper, the reader is referred to refer-
ences[17,18].

§2.Preliminaries

We first recall that the Green’s #- relations defined in [16].

aL#b if and only if for all e, f ∈ E(S1), ae = af ⇔ be = bf,

aR#b if and only if for all e, f ∈ E(S1), ea = fa ⇔ eb = fb.

We easily check that the relations L# and R# are equivalent relation. However, L# is not a
right compatible (that is,right congruence),R# is not a left compatible (that is,left congruence),
and L ⊆ L∗ ⊆ L#,R ⊆ R∗ ⊆ R#. A semigroup S is right #-abundant if each L#- class of S

contains at least one idempotent,write as #- rpp. we can define left # -abundant semigroups du-
ally, write as #-lpp. A semigroup S is called #-abundant if it is both right # -abundant and left
#- abundant. Abundant semigroups S is proper subclass of #-abundant semigroups(see[16]),
and if a, b are regular elements of S , then aL#b if and only if aLb (see[16]).

If there is no special indication of L# relation on S, we always suppose L# is a right congru-
ence on S, and always suppose that S is a Smarandache #-rpp semigroup whose idempotents
satisfy permutation identities,that is,PI- #-rpp.

Lemma 2.1. [16] For any e ∈ E(S), a ∈ S, the following conditions are equivalent:
(1)(e, a) ∈ L#;
(2)a = ae and ag = ah ⇔ eg = eh(∀g, h ∈ E(S1)).
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A band B is that a semigroup in which every element is an idempotent. We call a band B

a [left,right]normal band if B satisfies the identity (abc = acb, abc = bac)abcd = acbd.
Lemma 2.2. [14] The following statements are equivalent for a band B:

(1)B is normal;
(2)B is a strong semilattice of rectangular bands;
(3)L and R are a left normal band congruence and a right normal band congruence on, respec-
tively.

It is well known that any band is a semilattice of rectangular bands. If B = ∪α∈Y Bα is the
semilattice decomposition of a band B into rectangular bands Bα with α ∈ Y , then we shall
write Bα = E(e) for e ∈ Bα and Bα ≥ Bβ when α ≥ β on the indexed semilattice Y . Next, we
always assume that S is a Smarandache #-rpp semigroup satisfying the permutation identity:
x1x2 · · ·xn = xσ(1)xσ(2) · · ·xσ(n). We denote idempotents in the L#- class of a by a# for every
a ∈ S.

Lemma 2.3. [17] E(S) is a normal band.
Lemma 2.4. Let a ∈ S, e, f ∈ E(S). Then

(1)efa = efa# ;
(2)eaf = eaef.

Proof. Suppose that i is the minimum positive number such that σ(i) 6= i. Obviously
i < σ(i).

(1)Take xj = e when 1 ≤ j < i, xj = f , if 1 ≤ j < i, xj = f, i ≤ j < σ(i), σ(i) = a

otherwise σ(i) = a#. Then e(x1x2 · · ·xn)a# = efa. On the other hand, by Lemma 2.4,
e(xσ(1)xσ(2) · · ·xσ(n)) = eafa#, and hence, efa = eafa#.

(2)Now, assume that xj = e when 1 ≤ j < σ(i), xσ(i) = a otherwise xj = f , then
e(x1x2 · · ·xn)f = eaf , and ee(xσ(1)xσ(2) · · ·xσ(n))f = eaef or eafef . Hence, by Lemma 2.3,
we can infer that eafef = eaa#fef = eaa#eff = eaef . Thus, we get eaf = eaef

Now suppose that E(S) = [Y, Eα,Ψα,β ] is the strong semilattice of rectangular bands Eα.
If e ∈ Eα, we will write the rectangular band Eα by E(e). Also if EαEβ ⊆ Eβ , then we can
write Eβ ≤ Eα.

Lemma 2.5. For every a, b ∈ S and f ∈ E(S). If a = bf ,then E(a#) ≤ E(f).
Proof. If a = bf , then a = af . By the definition of L#, we have a# = a#f , and so

E(a#) ≤ E(f).

§3.The structure of Smarandache #-rpp semigroups satis-

fying permutation identities

In this section, we will give the concept of weak spined product of semigroups, and the
structure of Smarandache #-rpp semigroups satisfying permutation identities is obtained.

We now define a relation ε on S as follows:

aεb if and only if for some f ∈ E(b#), a = bf,

where a, b ∈ S.
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Lemma 3.1.(1) ε is a congruence on S preserving L#-class;
(2)ε ∩ L# = ıS (the identical mapping on S ).

Proof. First of all,we prove that ε is an equivalence relation. Obviously, aεa since a = aa#

for all a ∈ S. Hence ε is reflexive.

Let a, b ∈ S with aεb. Then for some f ∈ E(b#), a = bf . By Lemma 2.5,E(a#) < E(f) =
E(b#). It follows that a#b# ∈ E(a#), and aεb means that E(b#) < E(b#). Since

a(b#b#) = ab# = bfb# = bb#fb# = bb# = b.

We have bεa, and hence ε satisfies the symmetric relation. On the other hand, by the above
proof, bεa means that E(b#) ≤ E(a#). Therefore,E(b#) = E(a#).

Next,we show that ε is transitive. We let a, b, c ∈ S with aεb, bεc. Then we have E(a#) =
E(b#) = E(c#). By the definition of ε, there exist e, f ∈ E(c#) such that a = be, b = cf . Thus,
a = efe. Notice that fe ∈ E(c#) ,we get aεc. So ε is indeed an equivalence relation on S.

Following we show that ε is both left and right compatible. Now let a, b, c ∈ S and aεb.
Then there exists f ∈ E(b#) such that a = bf .Obviously,ca = cbf = cb(cb)#f . By Lemma2.5,
E(ca#) ≤ E((ca)#) and E((ca)#) ≤ E(f) , and hence (ca)#b# ∈ E((ca)#) but a = bf , this
implies that b = ab#. We have cb = cab# = ca(ca)#b#. Hence caεcb. By lemma 2.4, we have

ac = bfc = bb#fc = bb#cfc = bc(fc#) = bc(bc)#fc#.

We can deduce thatE((ac)#) ≤ E((bc)#) and E((ac)#) ≤ E(fc#) by lemma 2.5. A similar
argument for b = ab#, we can infer that E((bc)#) ≤ E((ac)#). Hence E((ac)#) = E((bc)#).
This means that (bc)#fc# ∈ E((bc)#). Therefore,acεbc, and hence ε is a congruence on S.

Finally, we prove that ε preserves L#- class. We need to prove that if aL#b then (ag)ε =
(ah)ε implies (bg)ε = (bh)ε , where g, h ∈ E(S1) and gε, hε ∈ (S/ε)1. Since (ag)ε(ah), by
the definition of ε, we have ah = agf for some f ∈ E((ag)#). Therefore, we obtain bh = bgf

since aL#b. Since L# is a right congruence on S, we have agL#bg for g ∈ E(S1) so that
E((ag)#) = E((bg)#) and thereby f ∈ E((ag)#) = E((bg)#). Thus, by the definition of ε,
bh = bgf allows (bg, bh) ∈ ε, that is, (bg)ε = (bh)ε. According to this result and its dual and
the definition of L#, we conclude that aεL#(S/ε)bε.

(2) Let (a, b) ∈ ε∩L#. Then a = bf for some f ∈ E(b#). Since aL#b,we get a#L#b#. So
a = ab# = bfb# = bb#fb# = bb# = b. Hence ε ∩ L# = ıS .

Lemma 3.2. E(S/ε) is a left normal band.

Proof. Since S is a PI-semigroup, we easily check that S/ε is a PI-semigroup. Notice that
aε ∈ E(S/ε) implies a ∈ E(S) and ε ∩ (E(S) × E(S)) = R. So E(S/ε) = E/R. Thus E(S/ε)
is a left normal band.

Lemma 3.3. If E(S) is a left normal band, then S satisfies the identity abc = acb.

Proof. Let i have the same neaning as that in the proof of lemma 2.4. For every a, b, c ∈ S,
take xi = b, xσ(i) = c and xj = a# otherwise then a#(x1x2 · · ·xn)c# = a#ba#ca#c#, a#bca#c#

a#ba#c or a#bc . By hypothesis and Lemma 2.4,we have

a#ba#ca#c# = a#ba#c = a#bb#a#c = a#bb#a#b#c = a#ba#b#c = a#bb#c = a#bcc# = a#bc.
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Thus, we obtain that a#(x1x2 · · ·xn)c# = a#ca#ba#c#, a#cba#c# or a#cbc#. In other word,
we have

a#ca#bc# = a#ca#ba#c# = a#cc#a#ba#c# = a#cc#a#cba#c#

= a#c#ac#ba#c# = a#cc#ba#c# = a#cba#c#

= a#cbc# = a#cc#b(b#c#b#) = a#cc#bc#b#

= a#cc#bb# = a#cb.

Hence a#(xσ(1))xσ(2) · · ·xσ(n) = a#ca#, ba#c#, a#cba#c# or a#cbc#. So we obtain a#bc =
a#cb, and hence we have abc = aa#bc = aa#cb = acb.

Theorem 3.4. Let S be a Smarandache #-rpp semigroup with set E(S) of idempotents.
Denote by λa the inner left translation of determined by a ∈ S. Then the following statements
are equivalent:
(1) S satisfies permutation identities;
(2) S satisfies the identity ;
(3) For all e ∈ E(S),eSe is a commutative semigroup and λe is a homomorphism;
(4) For all e ∈ E(S),eS satisfies the identity:abc = bac and λe is a homomorphism.

Proof. (1) ⇒ (2). Let S be a PI-Smarandache #-rpp semigroup. For every a, b, c, d ∈ S, by
Lemma 3.1-3.3,(adcd)ε = (acbd)ε. Then for some f ∈ E((acbd)#), abcd = acbdf . Furthermore,
we also have

abcd = abcdd#acbdfd# = acbd(acbd)#fd#

= acbd(acbd)#f(acbd)#d#

= acbd(acbd)#d# = acbd.

by Lemma 2.3.
(2) ⇒ (3). Assume that (2) holds. Let e ∈ E(S). Then for every a, b ∈ eSe. we have

a = ea = ae and b = eb = be . Hence ab = eabe = ebae = eab. This means that eSe is a
commutative semigroup. On the other hand, since λe(a)λe(b) = eaeb = eeab = eab = λe(ab) is
a homomorphism of into itself. Therefore (3) holds.

(3) ⇒ (4). Suppose that (3) holds. It remains to prove the first part. For all a, b, c ∈ eS,
we get a = ea, b = eb and c = ec. Since λe is a homomorphism, We have

abc = eaebec = (eae)(ebe)c = (ebe)(eae)(ebe)c = (eb)(ea)(ec) = bac.

(4) ⇒ (2). Let a, b, c, d ∈ S. Then

abcd = a(a#bcd) = a(a#b)(a#c)(a#d) = a(a#c)(a#b)(a#d) = a(a#cbd) = acbd.

(2) ⇒ (1). This part is trivial.
Let S be a Smarandache #-rpp semigroup whose idempotents form a subsemigroup E(S).

Let Y be the structure semilattice of E(S) such that E(S) = ∪α∈Y Eα is structure decomposition
of E(S). Now let B be a right normal band and B = ∪α∈Y Bα is a semilattice composition
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of the right zero band Bα. For a ∈ S , if a# ∈ Eα we denote aM = α. Take M = {(a, s) ∈
S ×B|x ∈ BaM . Define a multiplication ”◦ ” on M as follows:

(a, x) ◦ (b, y) = (ab, yϕbM,(ab)M), i.e. = (ab, zy),

when z ∈ B(ab)M. Notice that ab = abb#, we have (ab)# = (ab)#b#. It follows that (ab)M =
(ab)MbM. This means that (ab)M ≤ bM(”M ” is the natural order). Accordingly, yϕbM,(ab)M ∈
B(ab)M . So M is well defined and with respect to ”◦ ”, M is closed.

Lemma 3.5. M is a semigroup.
Proof. Because with respect to ”◦ ”, M is closed. We only need to show that ”◦ ” satisfies

the associative law. Let (a, x), (b, y), (c, z) ∈ M . Then by the above statement, we can show
that (abc)M ≤ (bc)M ≤ cM. Thus

((a, x) ◦ (b, y)) ◦ (c, z) = (ab, yϕbM,(ab)M) ◦ (c, z) = (abc, zϕcM,(abc)M)

= (a, x) ◦ (bc, zϕcM,(bc)M) = (a, x) ◦ ((b, y) ◦ (c, z)).

So ” ◦” is associative. Hence M is indeed a semigroup.
Definition 3.6. We call (M, ◦) above the weak–spined product of S and B , and denote

it by WS(S,B).
Lemma 3.7. If S satisfies the identity abc = acb, the WS(S,B) satisfies the identity

abcd = acbd.
Proof. Let (a.i), (b, j), (c, k), (d, l) ∈ WS(S,B). Then

(a.i)◦ (b, j)◦ (c, k)◦ (d, l) = (abcd, lϕdM,(abcd)M) = (abcd, lϕdM,(acbd)M) = (a.i)◦ (c, k)◦ (b, j)◦ (d, l).

Hence WS(S,B) satisfies the identity.
Theorem 3.8. A Smarandache #-rpp semigroup is a PI-Smarandache #-rpp semigroup

if and only if it is isomorphic to the weak spined product of a Smarandache #-rpp semigroup
satisfying the identity abc = acb and a right normal band.

Proof. By Lemma 3.7, it suffices to prove the “only if ”part. Suppose that S is a PI-
Smarandache #-rpp semigroup with normal band E(S). Then by Lemma 3.2 and Lemma
3.3, S/ε is a Smarandache #-rpp semigroup satisfying the identity abc = aeb. Let Y be the
structure decomposition of E(S). By Lemma 2.2, we have E(S)/L = ∪α∈Y Eα/L that is a right
normal band. Notice that ε is idempotent pure and ε ∩ (E(S) × E(S)) = R, we can easily
know that E(S/ε) = E(S)/R = ∪α∈Y Eα/R. Thus we can consider the weak spined product
WS(S/ε,E(S)/L).

Define
θ : S → WS(S/ε,E(S)/L), a 7→ (ae, a#),

where a# is the L - class of containing a#. In order to prove the theorem, we need only to show
that θ is an isomorphism. By Lemma 3.1, θ is well defined and injective. Take any element
(x, e) ∈ WS(S/ε,E(S)/L)(e ∈ E(S)), since x ∈ S/ε, there exists s ∈ S such that x = sε. By
the definition of WS(S/ε,E(S)/L), s#DEa. This means that θ is onto. For all s, t ∈ S, since
st = (st)t#, by the definition of L#, we have (st)# = (st)#t#. Furthermore, by Lemma 3.1, we
can get (st)# ∈ B((st)ε)M. Then θ(st) = ((st)ε, (st)#) = ((st)ε, (st)#t#) = (sε, s#)(tε, t#) =
θ(s)θ(t). To sum up,θ is an isomorphism of S onto WS(S/ε,E(S)/L). The proof is completed.
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