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Abstract: Let G be a graph without isolated vertices. A total dominator coloring of a

graph G is a proper coloring of the graph G with the extra property that every vertex in

the graph G properly dominates a color class. The smallest number of colors for which there

exists a total dominator coloring of G is called the total dominator chromatic number of G

and is denoted by χtd(G). In this paper we determine the total dominator chromatic number

in paths. Unless otherwise specified, n denotes an integer greater than or equal to 2.
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§1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard defini-

tions of graph theory as found in [2].

Let G = (V, E) be a graph of order n with minimum degree at least one. The open

neighborhood N(v) of a vertex v ∈ V (G) consists of the set of all vertices adjacent to v. The

closed neighborhood of v is N [v] = N(v)∪ {v}. For a set S ⊆ V , the open neighborhood N(S)

is defined to be ∪v∈SN(v), and the closed neighborhood of S is N [S] = N(S)∪S. A subset S of

V is called a dominating (total dominating) set if every vertex in V −S (V ) is adjacent to some

vertex in S. A dominating (total dominating) set is minimal dominating (total dominating) set

if no proper subset of S is a dominating (total dominating) set of G. The domination number

γ (total domination number γt) is the minimum cardinality taken over all minimal dominating

(total dominating) sets of G. A γ-set (γt-set) is any minimal dominating (total dominating)

set with cardinality γ (γt).

A proper coloring of G is an assignment of colors to the vertices of G, such that adjacent

vertices have different colors. The smallest number of colors for which there exists a proper col-

oring of G is called chromatic number of G and is denoted by χ(G). Let V = {u1, u2, u3, · · · , up}
and C = {C1, C2, C3, · · · , Cn} be a collection of subsets Ci ⊂ V . A color represented in a vertex

u is called a non-repeated color if there exists one color class Ci ∈ C such that Ci = {u}.
Let G be a graph without isolated vertices. A total dominator coloring of a graph G is
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a proper coloring of the graph G with the extra property that every vertex in the graph G

properly dominates a color class. The smallest number of colors for which there exists a total

dominator coloring of G is called the total dominator chromatic number of G and is denoted by

χtd(G). Generally, for an integer k ≥ 1, a Smarandachely k-dominator coloring of G is a proper

coloring on G such that every vertex in the graph G properly dominates a k color classes and

the smallest number of colors for which there exists a Smarandachely k-dominator coloring of G

is called the Smarandachely k-dominator chromatic number of G, denoted by χS
td(G). Clearly, if

k = 1, such a Smarandachely 1-dominator coloring and Smarandachely 1-dominator chromatic

number are nothing but the total dominator coloring and total dominator chromatic number

of G.

In this paper we determine total dominator chromatic number in paths.

Throughout this paper, we use the following notations.

Notation 1.1 Usually, the vertices of Pn are denoted by u1, u2, . . . , un in order. We also denote

a vertex ui ∈ V (Pn) with i > ⌈n
2 ⌉ by ui−(n+1). For example, un−1 by u−2. This helps us to

visualize the position of the vertex more clearly.

Notation 1.2 For i < j, we use the notation 〈[i, j]〉 for the subpath induced by 〈ui, ui+1, . . . , uj〉.
For a given coloring C of Pn, C|〈[i, j]〉 refers to the coloring C restricted to 〈[i, j]〉.

We have the following theorem from [1].

Theorem 1.3 For any graph G with δ(G) > 1, max{χ(G), γt(G)} 6 χtd(G) 6 χ(G) + γt(G).

Definition 1.4 We know from Theorem 1.3 that χtd(Pn) ∈ {γt(Pn), γt(Pn) + 1, γt(Pn) + 2}.
We call the integer n, good (respectively bad, very bad) if χtd(Pn) = γt(Pn) + 2 (if respectively

χtd(Pn) = γt(Pn) + 1, χtd(Pn) = γt(Pn)).

§2. Determination of χtd(Pn)

First, we note the values of χtd(Pn) for small n. Some of these values are computed in Theorems

2.7, 2.8 and the remaining can be computed similarly.

n γt(Pn) χtd(Pn)

2 2 2

3 2 2

4 2 3

5 3 4

6 4 4
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n γt(Pn) χtd(Pn)

7 4 5

8 4 6

9 5 6

10 6 7

Thus n = 2, 3, 6 are very bad integers and we shall show that these are the only bad integers.

First, we prove a result which shows that for large values of n, the behavior of χtd(Pn) depends

only on the residue class of nmod 4 [More precisely, if n is good, m > n and m ≡ n(mod 4)

then m is also good]. We then show that n = 8, 13, 15, 22 are the least good integers in their

respective residue classes. This therefore classifies the good integers.

Fact 2.1 Let 1 < i < n and let C be a td-coloring of Pn. Then, if either ui has a repeated

color or ui+2 has a non-repeated color, C|〈[i + 1, n]〉 is also a td-coloring. This fact is used

extensively in this paper.

Lemma 2.2 χtd(Pn+4) > χtd(Pn) + 2.

Proof For 2 6 n 6 5, this is directly verified from the table. We may assume n > 6.

Let u1, u2, u3, . . . , un+4 be the vertices of Pn+4 in order. Let C be a minimal td-coloring of

Pn+4. Clearly, u2 and u−2 are non-repeated colors. First suppose u4 is a repeated color. Then

C| 〈[5, n + 4]〉 is a td-coloring of Pn. Further, C| 〈[1, 4]〉 contains at least two color classes of C.

Thus χtd(Pn + 4) > χtd(Pn) + 2. Similarly the result follows if u−4 is a repeated color Thus

we may assume u4 and u−4 are non-repeated colors. But the C| 〈[3, n + 2]〉 is a td-coloring and

since u2 and u−2 are non-repeated colors, we have in this case also χtd(Pn+4) > χtd(Pn) + 2.�

Corollary 2.3 If for any n, χtd(Pn) = γt(Pn) + 2, χtd(Pm) = γt(Pm) + 2, for all m > n with

m ≡ n(mod 4).

Proof By Lemma 2.2, χtd(Pn+4) > χtd(Pn) + 2 = γt(Pn) + 2 + 2 = γt(Pn+4) + 2. �

Corollary 2.4 No integer n > 7 is a very bad integer.

Proof For n = 7, 8, 9, 10, this is verified from the table. The result then follows from the

Lemma 2.2. �

Corollary 2.5 The integers 2, 3, 6 are the only very bad integers.

Next, we show that n = 8, 13, 15, 22 are good integers. In fact, we determine χtd(Pn) for

small integers and also all possible minimum td-colorings for such paths. These ideas are used

more strongly in determination of χtd(Pn) for n = 8, 13, 15, 22.

Definition 2.6 Two td-colorings C1 and C2 of a given graph G are said to be equivalent if

there exists an automorphism f : G → G such that C2(v) = C1(f(v)) for all vertices v of G.

This is clearly an equivalence relation on the set of td-colorings of G.
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Theorem 2.7 Let V (Pn) = {u1, u2, . . . , un} as usual. Then

(1) χtd(P2) = 2. The only minimum td-coloring is (given by the color classes) {{u1}, {u2}}

(2) χtd(P3) = 2. The only minimum td-coloring is {{u1, u3}, {u2}}.

(3) χtd(P4) = 3 with unique minimum coloring {{u1, u4}, {u2}, {u3}}.

(4) χtd(P5) = 4. Any minimum coloring is equivalent to one of {{u1, u3}, {u2}, {u4}, {u5}} or

{{u1, u5}, {u2}, {u3}, {u4}} or {{u1}, {u2}, {u4}, {u3, u5}}.

(5) χtd(P6) = 4 with unique minimum coloring {{u1, u3}, {u4, u6}, {u2}, {u5}}.

(6) χtd(P7) = 5. Any minimum coloring is equivalent to one of {{u1, u3}, {u2}, {u4, u7}, {u5},
{u6}} or {{u1, u4}, {u2}, {u3}, {u5, u7}, {u6}} {{u1, u4, u7}, {u2}, {u3}, {u5}, {u6}}.

Proof We prove only (vi). The rest are easy to prove. Now, γt(P7) = ⌈7

2
⌉ = 4. Clearly

χtd(P7) > 4. We first show that χtd(P7) 6= 4 Let C be a td-coloring of P7 with 4 colors. The ver-

tices u2 and u−2 = u6 must have non-repeated colors. Suppose now that u3 has a repeated color.

Then {u1, u2, u3} must contain two color classes and C| 〈[4, 7]〉 must be a td-coloring which will

require at least 3 new colors (by (3)). Hence u3 and similarly u−3 must be non-repeated colors.

But, then we require more than 4 colors. Thus χtd(P7) = 5. Let C be a minimal td-coloring

of P7. Let u2 and u−2 have colors 1 and 2 respectively. Suppose that both u3 and u−3 are

non-repeated colors. Then, we have the coloring {{u1, u4, u7}, {u2}, {u3}, {u5}, {u6}}. If either

u3 or u−3 is a repeated color, then the coloring C can be verified to be equivalent to the coloring

given by {{u1, u3}, {u2}, {u4, u7}, {u5}, {u6}}, or by {{u1, u4}, {u2}, {u3}, {u5, u7}, {u6}}. �

We next show that n = 8, 13, 15, 22 are good integers.

Theorem 2.8 χtd(Pn) = γt(Pn) + 2 if n = 8, 13, 15, 22.

Proof As usual, we always adopt the convention V (Pn) = {u1, u2, . . . , un}; u−i = un+1−i

for i > ⌈n

2
⌉; C denotes a minimum td-coloring of Pn.

We have only to prove |C| > γt(Pn) + 1. We consider the following four cases.

Case 1 n = 8

Let |C| = 5. Then, as before u2, being the only vertex dominated by u1 has a non-repeated

color. The same argument is true for u−2 also. If now u3 has a repeated color, {u1, u2, u3}
contains 2-color classes. As C|〈[4, 8]〉 is a td-coloring, we require at least 4 more colors. Hence,

u3 and similarly u−3 must have non-repeated colors. Thus, there are 4 singleton color classes

and {u2}, {u3}, {u−2} and {u−3}. The two adjacent vertices u4 and u−4 contribute two more

colors. Thus |C| has to be 6.

Case 2 n = 13

Let |C| = 8 = γt(P13)+1. As before u2 and u−2 are non-repeated colors. Since χtd(P10) =

7+2 = 9, u3 can not be a repeated color, arguing as in case (i). Thus, u3 and u−3 are also non-

repeated colors. Now, if u1 and u−1 have different colors, a diagonal of the color classes chosen
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as {u1, u−1, u2, u−2, u3, u−3, . . .} form a totally dominating set of cardinality 8 = γt(P13) + 1.

However, clearly u1 and u−1 can be omitted from this set without affecting total dominating

set giving γt(P13) ≤ 6, a contradiction. Thus, u1 and u−1 = u13 have the same color say 1.

Thus, 〈[4,−4]〉 = 〈[4, 10]〉 is colored with 4 colors including the repeated color 1. Now, each of

the pair of vertices {u4, u6}, {u5, u7}, {u8, u10} contains a color classes. Thus u9 = u−5 must

be colored with 1. Similarly, u5. Now, if {u4, u6} is not a color class, the vertex with repeated

color must be colored with 1 which is not possible, since an adjacent vertex u5 which also has

color 1. Therefore {u4, u6} is a color class. Similarly {u8, u10} is also a color class. But then,

u7 will not dominate any color class. Thus |C| = 9.

Case 3 n = 15

Let |C| = 9. Arguing as before, u2, u−2, u3 and u−3 have non-repeated colors [χtd(P12) =

8]; u1 and u−1 have the same color, say 1. The section 〈[4,−4]〉 = 〈[4, 12]〉 consisting of 9

vertices is colored by 5 colors including the color 1. An argument similar to the one used in

Case (2), gives u4 (and u−4) must have color 1. Thus, C| 〈[5,−5]〉 is a td-coloring with 4 colors

including 1. Now, the possible minimum td-coloring of P7 are given by Theorem 2.7. We can

check that 1 can not occur in any color class in any of the minimum colorings given. e.g.

take the coloring given by {u5, u8}, {u6}, {u7}, {u9, u11}, {u10}. If u6 has color 1, u5 can not

dominate a color class. Since u4 has color 1, {u5, u8} can not be color class 1 and so on. Thus

χtd(P15) = 10.

Case 4 n = 22

Let |C| = γt(P22) + 1 = 13. We note that χtd(P19) = γt(P19) + 2 = 12. Then, arguing as

in previous cases, we get the following facts.

Fact 1 u2, u−2, u3, u−3 have non-repeated colors.

Fact 2 u1 and u−1 have the same color, say 1.

Fact 3 u7 is a non-repeated color.

This follows from the facts, otherwise C| 〈[8, 22]〉 will be a td-coloring; The section 〈[1, 7]〉
contain 4 color classes which together imply χtd(P22) > 4+χtd(P15) = 4+10 = 14. In particular

{u5, u7} is not a color class.

Fact 4 The Facts 1 and 2, it follows that C| 〈[4,−4]〉 = C| 〈[4, 19]〉 is colored with 9 colors

including 1. Since each of the pair
{
{u4, u6}, {u5, u7}, {u8, u10}, {u9, u11}, {u12, u14}, {u13, u15},

{u16, u18}, {u17, u19}} contain a color class, if any of these pairs is not a color class, one of the

vertices must have a non-repeated color and the other colored with 1. From Fact 3, it then

follows that the vertex u5 must be colored with 1. It follows that {u4, u6} must be a color class,

since otherwise either u4 or u6 must be colored with 1.

Since {u4, u6} is a color class, u7 must dominate the color class {u8}.

We summarize:

• u2, u3, u7, u8 have non-repeated colors.

• {u4, u6} is a color class



94 A.Vijayalekshmi

• u1 and u5 are colored with color 1.

Similarly,

• u−2, u−3, u−7, u−8 have non-repeated colors.

• {u−4, u−6} is a color class.

• u−1 and u−5 are colored with color 1.

Thus the section 〈[9,−9]〉 = 〈[9, 14]〉 must be colored with 3 colors including 1. This is easily

seen to be not possible, since for instance this will imply both u13 and u14 must be colored with

color1. Thus, we arrive at a contradiction. Thus χtd(P22) = 14. �

Theorem 2.9 Let n be an integer. Then,

(1) any integer of the form 4k, k > 2 is good;

(2) any integer of the form 4k + 1, k > 3 is good;

(3) any integer of the form 4k + 2, k > 5 is good;

(4) any integer of the form 4k + 3, k > 3 is good.

Proof The integers n = 2, 3, 6 are very bad and n = 4, 5, 7, 9, 10, 11, 14, 18 are bad. �

Remark 2.10 Let C be a minimal td-coloring of G. We call a color class in C, a non-dominated

color class (n-d color class) if it is not dominated by any vertex of G. These color classes are

useful because we can add vertices to these color classes without affecting td-coloring.

Lemma 2.11 Suppose n is a good number and Pn has a minimal td-coloring in which there

are two non-dominated color class. Then the same is true for n + 4 also.

Proof Let C1, C2, . . . , Cr be the color classes for Pn where C1 and C2 are non-dominated

color classes. Suppose un does not have color C1. Then C1∪{un+1}, C2∪{un+4}, {un+2}, {un+3},
C3, C4, · · · , Cr are required color classes for Pn+4. i.e. we add a section of 4 vertices with mid-

dle vertices having non-repeated colors and end vertices having C1 and C2 with the coloring

being proper. Further, suppose the minimum coloring for Pn, the end vertices have different

colors. Then the same is true for the coloring of Pn+4 also. If the vertex u1 of Pn does not have

the color C2, the new coloring for Pn+4 has this property. If u1 has color C2, then un does not

have the color C2. Therefore, we can take the first two color classes of Pn+4 as C1 ∪ {un+4}
and C2 ∪ {un+1}. �

Corollary 2.12 Let n be a good number. Then Pn has a minimal td-coloring in which the end

vertices have different colors. [It can be verified that the conclusion of the corollary is true for

all n 6= 3, 4, 11 and 18].

Proof We claim that Pn has a minimum td-coloring in which: (1)there are two non-

dominated color classes; (2)the end vertices have different colors.
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n = 8

n = 13 r1 r2 r1 r2r1r2

n = 15 r1 r2 r1 r2r1r2

n = 22 r1 r2 r1 r2 r2r1r2r1

Fig.1

Now, it follows from the Lemma 2.11 that (1) and (2) are true for every good integer. �

Corollary 2.13 Let n be a good integer. Then, there exists a minimum td-coloring for Pn with

two n-d color classes.
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