International J.Math. Combin. Vol.1 (2010), 74-79

The nth Power Signed Graphs-II

P. Siva Kota Reddy[†], S. Vijay^{††} and V. Lokesha[‡]

[†]Department of Mathematics, Rajeev Institute of Technology, Industrial Area, B-M Bypass Road, Hassan 573 201, India

^{††}Department of Mathematics, Govt. First Grade College, Kadur, Chikkamangalore 577 548, India

[‡]Department of Mathematics, Acharaya Institute of Technology, Soldevanahalli, Bangalore-90, India E-mail: [†]reddy_math@yahoo.com; ^{††}vijays_math@yahoo.com; [‡]lokiv@yahoo.com

Abstract: A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair $S = (G, \sigma)$ $(S = (G, \mu))$ where G = (V, E) is a graph called underlying graph of S and $\sigma : E \to (\overline{e}_1, \overline{e}_2, ..., \overline{e}_k)$ $(\mu : V \to (\overline{e}_1, \overline{e}_2, ..., \overline{e}_k))$ is a function, where each $\overline{e}_i \in \{+, -\}$. Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called abbreviated a signed graph or a marked graph. In this paper, we present solutions of some signed graph switching equations involving the line signed graph, complement and n^{th} power signed graph operations.

Keywords: Smarandachely k-signed graphs, Smarandachely k-marked graphs, signed graphs, marked graphs, balance, switching, line signed graph, complementary signed graph, n^{th} power signed graph.

AMS(2010): 05C 22

§1. Introduction

For standard terminology and notion in graph theory we refer the reader to Harary [6]; the non-standard will be given in this paper as and when required. We treat only finite simple graphs without self loops and isolates.

A Smarandachely k-signed graph (Smarandachely k-marked graph) is an ordered pair $S = (G, \sigma)$ $(S = (G, \mu))$ where G = (V, E) is a graph called underlying graph of S and $\sigma : E \to (\overline{e}_1, \overline{e}_2, ..., \overline{e}_k)$ $(\mu : V \to (\overline{e}_1, \overline{e}_2, ..., \overline{e}_k))$ is a function, where each $\overline{e}_i \in \{+, -\}$. Particularly, a Smarandachely 2-signed graph or Smarandachely 2-marked graph is called abbreviated a signed graph or a marked graph. A signed graph $S = (G, \sigma)$ is balanced if every cycle in S has an even number of negative edges (See [7]). Equivalently a signed graph is balanced if product of signs of the edges on every cycle of S is positive.

¹Received February 20, 2010. Accepted March 26, 2010.

A marking of S is a function $\mu : V(G) \to \{+, -\}$; A signed graph S together with a marking μ by S_{μ} .

The following characterization of balanced signed graphs is well known.

Proposition 1.1(E. Sampathkumar [8]) A signed graph $S = (G, \sigma)$ is balanced if, and only if, there exist a marking μ of its vertices such that each edge uv in S satisfies $\sigma(uv) = \mu(u)\mu(v)$.

Given a marking μ of S, by switching S with respect to μ we mean reversing the sign of every edge of S whenever the end vertices have opposite signs in S_{μ} [1]. We denote the signed graph obtained in this way is denoted by $S_{\mu}(S)$ and this signed graph is called the μ -switched signed graph or just switched signed graph. A signed graph S_1 switches to a signed graph S_2 (that is, they are switching equivalent to each other), written $S_1 \sim S_2$, whenever there exists a marking μ such that $S_{\mu}(S_1) \cong S_2$.

Two signed graphs $S_1 = (G, \sigma)$ and $S_2 = (G', \sigma')$ are said to be *weakly isomorphic* (see [13]) or *cycle isomorphic* (see [14]) if there exists an isomorphism $\phi : G \to G'$ such that the sign of every cycle Z in S_1 equals to the sign of $\phi(Z)$ in S_2 . The following result is well known (See [14]):

Proposition 1.2(T. Zaslavsky [14]) Two signed graphs S_1 and S_2 with the same underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Behzad and Chartrand [4] introduced the notion of line signed graph L(S) of a given signed graph S as follows: Given a signed graph $S = (G, \sigma)$ its *line signed graph* $L(S) = (L(G), \sigma')$ is the signed graph whose underlying graph is L(G), the line graph of G, where for any edge $e_i e_j$ in L(S), $\sigma'(e_i e_j)$ is negative if, and only if, both e_i and e_j are adjacent negative edges in S. Another notion of line signed graph introduced in [5], is as follows:

The line signed graph of a signed graph $S = (G, \sigma)$ is a signed graph $L(S) = (L(G), \sigma')$, where for any edge ee' in L(S), $\sigma'(ee') = \sigma(e)\sigma(e')$. In this paper, we follow the notion of line signed graph defined by M. K. Gill [5] (See also E. Sampathkumar et al. [9]).

Proposition 1.3(**M. Acharya** [2]) For any signed graph $S = (G, \sigma)$, its line signed graph $L(S) = (L(G), \sigma')$ is balanced.

For any positive integer k, the k^{th} iterated line signed graph, $L^k(S)$ of S is defined as follows:

$$L^{0}(S) = S, L^{k}(S) = L(L^{k-1}(S)).$$

Corollary 1.4 For any signed graph $S = (G, \sigma)$ and for any positive integer k, $L^k(S)$ is balanced.

Let $S = (G, \sigma)$ be a signed graph. Consider the marking μ on vertices of S defined as follows: for each vertex $v \in V$, $\mu(v)$ is the product of the signs on the edges incident with v. The complement of S is a signed graph $\overline{S} = (\overline{G}, \sigma^c)$, where for any edge $e = uv \in \overline{G}$, $\sigma^{c}(uv) = \mu(u)\mu(v)$. Clearly, \overline{S} as defined here is a balanced signed graph due to Proposition 1.1.

§2. n^{th} Power signed graph

The n^{th} power graph G^n of G is defined in [3] as follows:

The n^{th} power has same vertex set as G, and has two vertices u and v adjacent if their distance in G is n or less.

In [12], we introduced a natural extension of the notion of n^{th} power graphs to the realm of signed graphs: Consider the marking μ on vertices of S defined as follows: for each vertex $v \in V$, $\mu(v)$ is the product of the signs on the edges incident at v. The n^{th} power signed graph of S is a signed graph $S^n = (G^n, \sigma')$, where G^n is the underlying graph of S^n , where for any edge $e = uv \in G^n$, $\sigma'(uv) = \mu(u)\mu(v)$.

The following result indicates the limitations of the notion of n^{th} power signed graphs as introduced above, since the entire class of unbalanced signed graphs is forbidden to n^{th} power signed graphs.

proposition 2.1(P. Siva Kota Reddy et al.[12]) For any signed graph $S = (G, \sigma)$, its n^{th} power signed graph S^n is balanced.

For any positive integer k, the k^{th} iterated n^{th} power signed graph, $(S^n)^k$ of S is defined as follows:

$$(S^n)^0 = S, (S^n)^k = S^n((S^n)^{k-1})$$

Corollary 2.2 For any signed graph $S = (G, \sigma)$ and any positive integer k, $(S^n)^k$ is balanced.

The *degree* of a signed graph switching equation is then the maximum number of operations on either side of an equation in standard form. For example, the degree of the equation $S \sim \overline{L(S)}$ is one, since in standard form it is $L(S) \sim \overline{S}$, and there is one operation on each side of the equation. In [12], the following signed graph switching equations are solved:

•
$$\overline{S} \sim (L(S))^n$$
 (1)

•
$$L(\overline{S}) \sim (L(S))^n$$
 (2)

- $\overline{L(S)} \sim \overline{S}^n$, where $n \ge 2$ (3)
- $L^2(S) \sim S^n$, where $n \ge 2$ (4)
- $L^2(S) \sim \overline{S^n}$, where $n \ge 2$, and (5)
- $L^2(S) \sim \overline{S}^n$, where $n \ge 2$. (6)

Recall that $L^2(S)$ is the second iterated line signed graph S.

Several of these signed graph switching equations can be viewed as generalized of earlier work [11]. For example, equation (1) is a generalization of $L(S) \sim \overline{S}$, which was solved by Siva Kota Reddy and Subramanya [11]. When n = 1 in equations (3) and (4), we get $L(S) \sim S$ and $L^2(S) \sim S^2$, which was solved in [11]. If n = 1 in (5) and (6), the resulting signed graph switching equation was solved by Siva Kota Reddy and Subramanya [11].

Further, in this paper we shall solve the following three signed graph switching equations:

•
$$L(S) \sim S^n$$
 (7)

•
$$\overline{L(S)} \sim S^n \quad (orL(S) \sim \overline{S^n})$$
(8)

•
$$L(S) \sim (\overline{S})^n$$
 (9)

In the above expressions, the equivalence (i.e, \sim) means the switching equivalent between corresponding graphs.

Note that for n = 1, the equation (7) is reduced to the following result of E. Sampathkumar et al. [10].

Proposition 2.3(E. Sampathkumar et al. [10]) For any signed graph $S = (G, \sigma)$, $L(S) \sim S$ if, and only if, S is a balanced signed graph and G is 2-regular.

Note that for n = 1, the equations (8) and (9) are reduced to the signed graph switching equation which is solved by Siva Kota Reddy and Subramanya [11].

Proposition 2.4 (P. Siva Kota Reddy and M. S. Subramanya [11]) For any signed graph $S = (G, \sigma), L(S) \sim \overline{S}$ if, and only if, G is either C_5 or $K_3 \circ K_1$.

§3. The Solution of $L(S) \sim S^n$

We now characterize signed graphs whose line signed graphs and its n^{th} power line signed graphs are switching equivalent. In the case of graphs the following result is due to J. Akiyama et. al [3].

Proposition 3.1(J. Akiyama et al. [3]) For any $n \ge 2$, the solutions to the equation $L(G) \cong G^n$ are graphs $G = mK_3$, where m is an arbitrary integer.

Proposition 3.2 For any signed graph $S = (G, \sigma)$, $L(S) \sim S^n$, where $n \ge 2$ if, and only if, G is mK_3 , where m is an arbitrary integer.

Proof Suppose $L(S) \sim S^n$. This implies, $L(G) \cong G^n$ and hence by Proposition 3.1, we see that the graph G must be isomorphic to mK_3 .

Conversely, suppose that G is mK_3 . Then $L(G) \cong G^n$ by Proposition 3.1. Now, if S is a signed graph with underlying graph as mK_3 , by Propositions 1.3 and 2.1, L(S) and S^n are balanced and hence, the result follows from Proposition 1.2.

§4. Solutions of $\overline{L(S)} \sim S^n$

In the case of graphs the following result is due to J. Akiyama et al. [3].

Proposition 4.1(J. Akiyama et al. [3]) For any $n \ge 2$, $G = C_{2n+3}$ is the only solution to the equation $\overline{L(G)} \cong G^n$.

Proposition 4.2 For any signed graph $S = (G, \sigma)$, $\overline{L(S)} \sim S^n$, where $n \ge 2$ if, and only if, G is C_{2n+3} .

Proof Suppose $\overline{L(S)} \sim S^n$. This implies, $\overline{L(G)} \cong G^n$ and hence by Proposition 4.1, we see that the graph G must be isomorphic to C_{2n+3} .

Conversely, suppose that G is C_{2n+3} . Then $\overline{L(G)} \cong G^n$ by Proposition 4.1. Now, if S is a signed graph with underlying graph as C_{2n+3} , by definition of complementary signed graph and Proposition 2.1, $\overline{L(S)}$ and S^n are balanced and hence, the result follows from Proposition 1.2.

In [3], the authors proved there are no solutions to the equation $L(G) \cong (\overline{G})^n, n \ge 2$. So its very difficult, in fact, impossible to construct switching equivalence relation of $L(S) \sim (\overline{S})^n$.

References

- R. P. Abelson and M. J. Rosenberg, Symoblic psychologic: A model of attitudinal cognition, Behav. Sci., 3 (1958), 1-13.
- [2] M. Acharya, x-Line sigraph of a sigraph, J. Combin. Math. Combin. Comput., 69(2009), 103-111.
- [3] J. Akiyama, K. Kanoko and S. Simic, Graph equations for line graphs and n-th power graphs I, Publ. Inst. Math. (Beograd), 23 (37) (1978), 5-8.
- [4] M. Behzad and G. T. Chartrand, Line-coloring of signed graphs, *Elemente der Mathematik*, 24(3) (1969), 49-52.
- [5] M. K. Gill, Contributions to some topics in graph theory and its applications, Ph.D. thesis, The Indian Institute of Technology, Bombay, 1983.
- [6] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [7] F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2(1953), 143-146.
- [8] E. Sampathkumar, Point signed and line signed graphs, Nat. Acad. Sci. Letters, 7(3) (1984), 91-93.
- [9] E. Sampathkumar, P. Siva Kota Reddy, and M. S. Subramanya, The Line *n*-sigraph of a symmetric *n*-sigraph, *Southeast Asian Bull. Math.*, to appear.
- [10] E. Sampathkumar, P. Siva Kota Reddy, and M. S. Subramanya, Common-edge signed graph of a signed graph-Submitted.
- [11] P. Siva Kota Reddy, and M. S. Subramanya, Signed Graph Equation $L^{K}(S) \sim \overline{S}$, International J. Math. Combin., 4 (2009), 84-88.
- [12] P. Siva Kota Reddy, S. Vijay and V. Lokesha, nth Power signed graphs, Proceedings of the Jangjeon Math. Soc., 12(3) (2009), 307-313.

- [13] T. Sozánsky, Enueration of weak isomorphism classes of signed graphs, J. Graph Theory, 4(2)(1980), 127-144.
- [14] T. Zaslavsky, Signed Graphs, Discrete Appl. Math., 4(1)(1982), 47-74.