Nikodým-type theorems for lattice group-valued measures with respect to filter convergence

A. Boccuto and X. Dimitriou *

Abstract

We present some convergence and boundedness theorem with respect to filter convergence for lattice group-valued measures, whose techniques are based on sliding hump arguments.

We give some new versions of Nikodým convergence, boundedness and Brooks-Jewett-type theorems with respect to filter convergence for lattice group-valued measures, defined on a σ -algebra of an abstract nonempty set, in which sliding hump-type techniques are used.

Let R be a Dedekind complete (ℓ) -group, Q be a countable set and \mathcal{F} be a filter of Q. A subset of Q is \mathcal{F} -stationary iff it has nonempty intersection with every element of \mathcal{F} . We denote by \mathcal{F}^* the family of all \mathcal{F} -stationary subsets of Q.

A filter \mathcal{F} of Q is said to be *diagonal* iff for every sequence $(A_n)_n$ in \mathcal{F} and for each $I \in \mathcal{F}^*$ there exists a set $J \subset I$, $J \in \mathcal{F}^*$ such that the set $J \setminus A_n$ is finite for all $n \in \mathbb{N}$. Given an infinite set $I \subset Q$, a *blocking* of I is a countable partition $\{D_k : k \in \mathbb{N}\}$ of I into nonempty finite subsets.

A filter \mathcal{F} of Q is said to be *block-respecting* iff for every $I \in \mathcal{F}^*$ and for each blocking $\{D_k : k \in \mathbb{N}\}$ of I there is a set $J \in \mathcal{F}^*$, $J \subset I$ with $\sharp(J \cap D_k) = 1$ for all $k \in \mathbb{N}$, where \sharp denotes the number of elements of the set into brackets.

If $I \in \mathcal{F}^*$, then the trace $\mathcal{F}(I)$ of \mathcal{F} on I is the family $\{A \cap I : A \in \mathcal{F}\}$. It is not difficult to see that $\mathcal{F}(I)$ is a filter of I.

^{*}Authors' Address: A. Boccuto: Dipartimento di Matematica e Informatica, via Vanvitelli, 1 I-06123 Perugia, Italy, E-mail: boccuto@yahoo.it, antonio.boccuto@unipg.it

X. Dimitriou: Department of Mathematics, University of Athens, Panepistimiopolis, Athens 15784, Greece, Email: xenofon11@gmail.com, dxenof@math.uoa.gr

²⁰¹⁰ A. M. S. Subject Classifications: Primary: 26E50, 28A12, 28A33, 28B10, 28B15, 40A35, 46G10, 54A20, 54A40.

Secondary: 06F15, 06F20, 06F30, 22A10, 28A05, 40G15, 46G12, 54H11, 54H12.

Key words and phrases: lattice group, (free) filter, (s)-bounded measure, σ -additive measure, diagonal filter, block-respecting filter, limit theorem, Nikodým boundedness theorem, Stone Isomorphism technique.

Observe that, If \mathcal{F} is a block-respecting filter of \mathbb{N} , then $\mathcal{F}(I)$ is a block-respecting filter of I for every $I \in \mathcal{F}^*$.

Let \mathcal{F} be a filter of \mathbb{N} . A sequence $(x_n)_n$ in R $(D\mathcal{F})$ -converges to $x \in R$ iff there is a (D)sequence $(a_{t,l})_{t,l}$ with the property that $\left\{n \in \mathbb{N} : |x_n - x| \leq \bigvee_{t=1}^{\infty} a_{t,\varphi(t)}\right\} \in \mathcal{F}$ for each $\varphi \in \mathbb{N}^{\mathbb{N}}$.

Let Ξ be any arbitrary nonempty set. A family $(\beta_{\xi,n})_{\xi\in\Xi,n\in\mathbb{N}}$ is said to be $(RD\mathcal{F})$ -convergent to a family $(\beta_{\xi})_{\xi\in\Xi}$ with respect to $\xi\in\Xi$ iff there is a regulator $(a_{t,l})_{t,l}$ such that for each $\varphi\in\mathbb{N}^{\mathbb{N}}$ and $\xi\in\Xi$ we get

$$\left\{n \in \mathbb{N} : |\beta_{\xi,n} - \beta_{\xi}| \le \bigvee_{t=1}^{\infty} a_{t,\varphi(t)}\right\} \in \mathcal{F}.$$

Given $a < b \in R$, set $[a,b] = \{x \in R: a \leq x \leq b\}$. For $A, B \subset R, n \in \mathbb{N}$, put $A + B = \{a + b: a \in A, b \in B\}, nA = \{a + \ldots + a\}$ (*n* times). Let $U_n = [-u_n, u_n], n \in \mathbb{N}$, be such that $0 < u_n \leq u_{n+1}$ for every $n \in \mathbb{N}$. A set $\{x_n : n \in \mathbb{N}\} \subset R$ is said to be (PR)- \mathcal{F} -bounded by $(U_n)_n$, iff $\{n \in \mathbb{N} : x_n \in U_n\} \in \mathcal{F}$, and (PR)-eventually bounded by $(U_n)_n$ iff it is (PR)- \mathcal{F} -cofin-bounded by $(U_n)_n$.

We now give the main results.

Theorem 0.1. Let R be a Dedekind complete (ℓ) -group, \mathcal{F} be a block-respecting filter of \mathbb{N} , $m_n : \Sigma \to R, n \in \mathbb{N}$, be a sequence of equibounded σ -additive measures, $(C_k)_k$ be a disjoint sequence in Σ , with

(i) (D) $\lim_{n} m_n(C_k) = 0$ for any $k \in \mathbb{N}$, and

(*ii*)
$$(RD\mathcal{F}) \lim_{n} m_n(\bigcup_{k \in P} C_k) = 0$$
 with respect to $P \in \mathcal{P}(\mathbb{N})$.

Then,

 γ) for every strictly increasing sequence $(k_n)_n$ in \mathbb{N} we get

$$(D\mathcal{F})\lim_{n \to \infty} m_n(C_{k_n}) = 0; \tag{1}$$

 $\gamma\gamma$) if \mathcal{F} is also diagonal and R is super Dedekind complete and weakly σ -distributive, then the only condition (ii) is sufficient to get (1).

Theorem 0.2. Let R be a Dedekind complete (ℓ) -group, $(C_k)_k$ be as in Theorem 0.1, \mathcal{F} be a block-respecting filter of \mathbb{N} , $m_n : \Sigma \to R$, $n \in \mathbb{N}$, be an equibounded sequence of finitely additive measures, and assume that

- (i) (D) $\lim m_n(C_k) = 0$ for any $k \in \mathbb{N}$;
- (*ii*) $(RD\mathcal{F}) \lim_{n} \sum_{k \in P} m_n(C_k) = 0$ with respect to $P \in \mathcal{P}(\mathbb{N})$.

Then for every strictly increasing sequence $(k_n)_n$ in \mathbb{N} we get

$$(D\mathcal{F})\lim_{n} m_n(C_{k_n}) = 0.$$
(2)

If \mathcal{F} is also diagonal and R is super Dedekind complete and weakly σ -distributive, then the only condition (ii) is enough to get (2).

Theorem 0.3. Let R be any Dedekind complete (ℓ) -group, $u \in R$, u > 0, U = [-u, u], \mathcal{F} be a block-respecting filter of \mathbb{N} , $m_j: \Sigma \to R$, $j \in \mathbb{N}$, be a sequence of finitely additive measures, and assume that

0.3.1) for every disjoint sequence $(C_n)_n$ in Σ and $j \in \mathbb{N}$ there is $Q_j \subset \mathbb{N}$ with $\sum_{n \in Q} m_j(C_n) \in U$ for each $Q \subset Q_i$.

Let $(C_n)_n$ be a disjoint sequence in Σ and $(w_n)_n$ be an increasing sequence of positive elements of R. For each $n \in \mathbb{N}$, set $W_n := [-w_n, w_n]$ and $V_n := n W_n + U$. Moreover suppose that:

(i) the set $\{m_n(C_p) : n \in \mathbb{N}\}\$ is (PR)-eventually bounded by $(W_n)_n$ for each $p \in \mathbb{N}$; (ii) the set $\left\{\sum_{p\in P} m_j(C_p) : n\in\mathbb{N}\right\}$ is (PR)- \mathcal{F} -bounded by $(W_n)_n$ for each $P\in\mathcal{P}(\mathbb{N})$.

Then we get:

(j) for every strictly increasing sequence $(l_n)_n$ in \mathbb{N} , the set $D := \{m_n(C_{l_n}) : n \in \mathbb{N}\}$ is (PR)- \mathcal{F} -bounded by $(V_n)_n$;

(jj) if \mathcal{F} is also diagonal, then the only condition (ii) is enough in order that D is (PR)- \mathcal{F} -bounded by $(V_n)_n$.