THE SHORT PROOF

LESZEK W. GUŁA
Dedicated to my Parents and my Brother

Abstract. The short proof of the Fermat's Last Theorem.

I. INTRODUCTION

It is known that for each $u, v \in \mathbb{R}_{+}$, such that $u>v$:

$$
\begin{gather*}
\left\{u^{2}-v^{2}=x \wedge 2 u v=y \wedge u^{2}+v^{2}=z \wedge\right. \\
\left.x^{2}+y^{2}=z^{2} \wedge(x+y)^{2}+[\pm(x-y)]^{2}=2 z^{2}\right\} \tag{1}
\end{gather*}
$$

II. The FERMAT's LAST THEOREM

Theorem 1 (FLT). For all $n \in\{3,4,5, \ldots\}$ the equation

$$
X^{n}+Y^{n}=Z^{n}
$$

has no primitive solutions in \mathbb{N}_{1}.
Proof of the Main Theorem. Suppose that for some $n \in\{3,4,5, \ldots\}$ the equation

$$
X^{n}+Y^{n}=Z^{n}
$$

has primitive solutions $[X, Y, Z]$ in \mathbb{N}_{1}.
We assume that for some $u, v \in \mathbb{R}_{+}$, with $u>v$:

$$
\left[u^{2}-v^{2}=\left(X^{\frac{n}{4}}\right)^{2} \wedge 2 u v=Y^{\frac{n}{2}} \wedge u^{2}+v^{2}=\left(Z^{\frac{n}{4}}\right)^{2}\right]
$$

Thus on the strength of (1):

$$
\begin{gathered}
{\left[2 u^{2}=\left(X^{\frac{n}{4}}\right)^{2}+\left(Z^{\frac{n}{4}}\right)^{2} \wedge \pm X^{\frac{n}{4}}=X^{\frac{n}{4}}-v \wedge X^{\frac{n}{4}}+v=Z^{\frac{n}{4}}\right] \Rightarrow} \\
\left(X^{\frac{n}{4}}=Z^{\frac{n}{4}} \vee 3 X^{\frac{n}{4}}=Z^{\frac{n}{4}}\right) \Rightarrow\left(X^{n}=Z^{n} \vee 3^{4} X^{n}=Z^{n}\right) \Rightarrow \operatorname{gcd}(X, Z)>1
\end{gathered}
$$

which is inconsistent with $\operatorname{gcd}(X, Z)=1$. This is the proof.
LUblin-POLAND
E-mail address: Iwgula@wp.pl

Date: 12 June 2013-04 December 2013.
1991 Mathematics Subject Classification. Primary: 11D41; Secondary: 11D45.
Key words and phrases. Diophantus Equation, Fermat Equation, Greatest Common Divisor, Indirect Proof, Pythagoras Theorem.

This paper is in final form.

