The p-Arm Theory

Arm Boris Nima

arm.boris@gmail.com

Keywords : Series, Exponential
MSC : 40-00

Abstract

We introduce the p-Arm theory which give rise to a new mathematical object that we call the " p -exponential" which is invariant under p derivation. We calculate its derivate and we use this new function to solve differential equations. Next, we define its real and imaginary part which are the p -cosinus and the p -sinus respectively.

Introduction

The Arm theory [1] gives a developpment on any p-th power function basis in changing of variable in the Arm formula. But for functions in $\mathbb{C}\left[\left(u(z)-z_{0}\right)^{p}\right], p \in \mathbb{N}^{*}$ there is an other way (the p-Arm formula) to make this developpment : instead of changing the variable at the p-th powers, you can also derivate p times which will finally give the same result. This is the main idea behind the p-Arm theory.

The exponential function is the function which leaves invariant the operator in the Taylor formula i.e. :

$$
\begin{equation*}
\frac{\partial e^{x}}{\partial x}=e^{x} \tag{0.1}
\end{equation*}
$$

So in constructing the p-Arm theory, we see that we need a "p-exponential" $e_{p}{ }^{x}$ function which leaves the operator of the p -Arm formula invariant :

$$
\begin{equation*}
\frac{\partial^{p} e_{p}^{x}}{\partial x^{p}}=e_{p}^{x} \quad ; \quad \frac{\partial^{k} e_{p}^{x}}{\partial x^{k}} \neq e_{p}^{x} \tag{0.2}
\end{equation*}
$$

for $1 \leq k<p$. The answer to the question (0.2) is the definition of the p -exponential as follow :

$$
\begin{equation*}
e_{p}^{x}=\sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!} \tag{0.3}
\end{equation*}
$$

The p-Arm formula is not so much interesting itself because we already have the developpment by the Arm-theory, but this formula give rise to the p-exponential which is very interesting to study.

In studying the derivate of the p-exponential, we see that this operator acts like a shift operator on the p-exponential and we need a generalization of the "p-exponential" to also include its derivate. This generalized exponential function is:

$$
\begin{equation*}
e_{p, \mu}^{x}=\sum_{k=0}^{\infty} \frac{x^{p k+\mu}}{(p k+\mu)!} \tag{0.4}
\end{equation*}
$$

for $p, \mu \in \mathbb{N}^{*}$. I know that there is already a generalized exponential function in the theory of the fractional calculus (see [2]) which is given by

$$
\begin{equation*}
E_{\mu}^{y} \equiv \sum_{k=0}^{\infty} \frac{t^{k-\mu}}{\Gamma(k+1-\mu)} \tag{0.5}
\end{equation*}
$$

but which one I introduce here is more generalized because (0.4) has a multiplication and a shift whereas (0.5) has only a shift.

In the first section, we give the equivalent of the Arm formula for the p-Arm theory which we naturally call the p -Arm formula for function in $\mathbb{C}\left[\left(u(z)-z_{0}\right)^{p}\right]$.

In the second section, we give the equivalent shifted Arm formula for the p-Arm theory which we call the shifted p-Arm formula.

In the third section, we give the definition of the generalized exponential function. Next, we draw the six first real p-exponentials which is a beautiful graph. In effect, we explain why the p-th derivate of the p-exponential is itself. In this case, we calculate the derivate of the p-exponential. Thereby, we give the relation between the p-exponential and the traditional exponential. This is why we use this result to show that every function solving that its p-th derivate is itself can be expressed as a linear combination of p -exponential and we give the example of $p=2$. Then defining the complex p exponential, we give its real part called the p-cosinus and we draw the six first p-cosinus. Furthermore, we define the p -sinus which is the imaginary part of the complex p -exponential and we draw the six first of it. Finally, we define the p-tangent and we draw the six first p-tangent.

1 The p-Arm Formula

First we introduce the generalization to each basis $u(z)$ of the well known Taylor formula which is written in the basis $u(z)=z$ for each basis of the space $\mathbb{C}\left[\left(u(z)-z_{0}\right)^{p}\right]=\operatorname{span}\left\{1,\left(u(z)-z_{0}\right)^{p},(u(z)-\right.$ $\left.\left.z_{0}\right)^{2 p}, \ldots\right\}$
Theorem 1. $\forall u(z) \in \mathcal{C}(\mathbb{C})$ if $\exists z \in \mathbb{C}$ such that $u(z)=z_{0} \in \mathbb{C}$ then $\forall f(z) \in \mathbb{C}\left[\left(u(z)-z_{0}\right)^{p}\right]$

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} \frac{1}{(p k)!}\left[\lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k} f(z)\right]\left(u(z)-z_{0}\right)^{p k} \tag{1.6}
\end{equation*}
$$

Proof :

It's enough to show this formula on the basis $\left\{\left(u(z)-z_{0}\right)^{p r}\right\}_{r \in \mathbb{N}}$.
If $k<r$:

$$
\begin{align*}
\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k}\left(u(z)-z_{0}\right)^{p r} & =\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)} \partial_{u(z)}^{p k}\left(u(z)-z_{0}\right)^{p r} \\
& =\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)} \frac{(p r)!}{(p(r-k))!}\left(u(z)-z_{0}\right)^{p(r-k)} \\
\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k}\left(u(z)-z_{0}\right)^{p r} & =0 \tag{1.7}
\end{align*}
$$

If $k>r$:

$$
\begin{align*}
\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k}\left(u(z)-z_{0}\right)^{p r} & =\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial}{\partial u(z)}\right)^{p k}\left(u(z)-z_{0}\right)^{p r} \\
& =\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)} \partial_{u(z)}^{p(k-r)}(p r)! \\
\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k}\left(u(z)-z_{0}\right)^{p r} & =0 \tag{1.8}
\end{align*}
$$

If $k=r:$

$$
\begin{align*}
& \frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k}\left(u(z)-z_{0}\right)^{p r}=\lim _{z \rightarrow u^{-1}\left(z_{0}\right)} \frac{(p r)!}{(p k)!} \\
& \frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k}\left(u(z)-z_{0}\right)^{p r} \tag{1.9}
\end{align*}
$$

So we can see that :

$$
\begin{equation*}
\frac{1}{(p k)!} \lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k}\left(u(z)-z_{0}\right)^{p r}=\delta_{k, r} \tag{1.10}
\end{equation*}
$$

2 The Shifted p-Arm Formula

If you have a function $f \in \mathbb{C}\left[\left(u\left(z-z_{0}\right)^{-p}\right] \oplus \mathbb{C}\left[\left(u(z)-z_{0}\right)^{p}\right]\right.$, you can know it if the coefficients on the negative basis are zeros before the infinity.

Theorem 2. $\forall u(z) \in \mathcal{C}(\mathbb{C})$ if $\exists z \in \mathbb{C}$ such that $u(z)=z_{0} \in \mathbb{C}$ then $\forall f(z) \in \mathbb{C}\left[\left(u(z)-z_{0}\right)^{p}\right] \oplus \mathbb{C}\left[\left(u(z)-z_{0}\right)^{-p}\right]$
$f(z)=\sum_{k=-m_{p}(u, f)}^{\infty} \frac{1}{\left(p\left(k+m_{p}(u, f)\right)\right)!}\left[\lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p\left(k+m_{p}(u, f)\right)}\left(u(z)-z_{0}\right)^{p m_{p}(u, f)} f(z)\right]\left(u(z)-z_{0}\right)^{p k}$
where the integer $m_{p}(u, f) \in \mathbb{N}$ is given by :

$$
\begin{equation*}
m_{p}(u, f)=\lim _{z \rightarrow u^{-1}\left(z_{0}\right)}-\frac{\ln (f(z))}{p \ln \left(u(z)-z_{0}\right)}<\infty \tag{2.12}
\end{equation*}
$$

Proof:
Let $f(z)$ has the decomposition

$$
\begin{equation*}
f(z)=\sum_{k=-m_{p}(u, f)}^{\infty} \alpha_{p k}\left(u(z)-z_{0}\right)^{p k}=\sum_{k=0}^{\infty} \alpha_{p\left(k-m_{p}(u, f)\right)}\left(u(z)-z_{0}\right)^{p k}\left(u(z)-z_{0}\right)^{-p m_{p}(u, f)} \tag{2.13}
\end{equation*}
$$

where $\alpha_{p k}=<f,\left(u(z)-z_{0}\right)^{p k}>$. Pratically, we determine m_{p} in calculating

$$
\begin{align*}
\lim _{z \rightarrow u^{-1}\left(z_{0}\right)}-\frac{\ln (f(z))}{p \ln \left(u(z)-z_{0}\right)} & =\lim _{z \rightarrow u^{-1}\left(z_{0}\right)}-\frac{\ln \left(\sum_{k=-m(u, f)}^{\infty} \alpha_{k}\left(u(z)-z_{0}\right)^{k}\right)}{p \ln \left(u(z)-z_{0}\right)} \\
& =\lim _{z \rightarrow u^{-1}\left(z_{0}\right)}-\frac{\ln \left(\alpha_{-m(u, f)}\left(u(z)-z_{0}\right)^{-m(u, f)}\right)}{p \ln \left(u(z)-z_{0}\right)} \\
\lim _{z \rightarrow u^{-1}\left(z_{0}\right)}-\frac{\ln (f(z))}{p \ln \left(u(z)-z_{0}\right)} & =m(u, f) \tag{2.14}
\end{align*}
$$

Inserting (2.13) in (1.6), we deduce

$$
\begin{equation*}
\left(u(z)-z_{0}\right)^{p m_{p}(u, f)} f(z)=\sum_{k=0}^{\infty} \frac{1}{(p k)!}\left[\lim _{z \rightarrow u^{-1}\left(z_{0}\right)}\left(\frac{\partial z}{\partial u} \frac{\partial}{\partial z}\right)^{p k}\left(u(z)-z_{0}\right)^{p m_{p}(u, f)} f(z)\right]\left(u(z)-z_{0}\right)^{p k} \tag{2.15}
\end{equation*}
$$

from which we deduce (2.11) in changing $k^{\prime}=k-m_{p}(u, f)$.

Remark 1. If you consider the shifted p-Arm formula (2.11) for $p=2, u(z)=e^{i z}$ and $z_{0}=0$, you will check that :

$$
\begin{equation*}
\cos ^{2}(z)=\frac{e^{2 i z}+2+e^{-2 i z}}{4} \tag{2.16}
\end{equation*}
$$

with $m_{2}\left(e^{i z}, \cos ^{2}\right)=1$.

The shifted p-Arm formula gives rise to a new mathematical function which make one the limit in the formula (2.11).

3 The p-exponential

Definition 1. We define the generalised exponential function :

$$
\begin{equation*}
e_{p, \mu}^{x}=\sum_{k=0}^{\infty} \frac{x^{k p+\mu}}{(k p+\mu)!} \tag{3.17}
\end{equation*}
$$

for $p, \mu \in \mathbb{N}^{*}$.

In the rest of this paper, we will call $e_{p, 0}^{x}=e_{p}^{x}$ the "p-exponential".

Now because we want see what are these new function, we draw the 6 first real p-exponentials :

Figure 1 - The six first p-exponentials
We now explain why is this function interesting
Proposition 1. The p-exponential is a function such that

$$
\begin{equation*}
\frac{\partial^{p} e_{p}^{x}}{\partial x^{p}}=e_{p}^{x} \quad \text { and } \quad \frac{\partial^{l} e_{p}^{x}}{\partial x^{l}} \neq e_{p}^{x} \tag{3.18}
\end{equation*}
$$

for each $1 \leq l<p$.

Proof:

$$
\begin{align*}
\frac{\partial^{p} e_{p} x}{\partial x^{p}} & =\frac{\partial^{p}}{\partial x^{p}} \sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!} \\
& =\sum_{k=1}^{\infty} \frac{(p k)!}{(p k-p)!} \frac{x^{p k}}{(p k)!} \\
& =\sum_{k=1}^{\infty} \frac{x^{p k-p}}{(p k-p)!} \\
& =\sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!} \\
\frac{\partial^{p} e_{p}^{x}}{\partial x^{p}} & =e_{p}^{x} \tag{3.19}
\end{align*}
$$

The second part of (3.18) is trivial.

Now, we calculate the derivative of the p-exponential
Proposition 2. The derivate of the p-exponential is given by:

$$
\begin{equation*}
\frac{\partial e_{p}^{x}}{\partial x}=e_{p, p-1}^{x} \tag{3.20}
\end{equation*}
$$

where $p \in \mathbb{N}^{*}$.

Proof:

$$
\begin{align*}
\frac{\partial e_{p}{ }^{x}}{\partial x} & =\frac{\partial}{\partial x} \sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!} \\
& =\sum_{k=1}^{\infty}(p k) \frac{x^{p k-1}}{(p k)!} \\
& =\sum_{k=1}^{\infty} \frac{x^{p k-1}}{(p k-1)!} \\
& =\sum_{k=0}^{\infty} \frac{x^{p k+p-1}}{(p k+p-1)!} \\
\frac{\partial e_{p}^{x}}{\partial x} & =e_{p, p-1}^{x} \tag{3.21}
\end{align*}
$$

Remark 2. Of course we have

$$
\begin{equation*}
\frac{\partial e_{p}^{u(x)}}{\partial x}=\frac{\partial u}{\partial x} e_{p, p-1}^{u(x)} \tag{3.22}
\end{equation*}
$$

Remark 3. We see that because of (3.20), we have :

$$
\begin{equation*}
\frac{\partial^{k} e_{p}^{x}}{\partial x^{k}}=e_{p, p-k}^{x} \tag{3.23}
\end{equation*}
$$

for $1 \leq k \leq p$. So the derivation acts like a shift operator on the p-exponential.
Now we show an interesting relation which link the p-exponential with the traditional exponential.
Proposition 3. The link between the p-exponential and the usual exponential is given by :

$$
\begin{equation*}
\left(\sum_{\mu=0}^{p-1} \frac{\partial^{\mu}}{\partial x^{\mu}}\right) e_{p}^{x}=e^{x} \tag{3.24}
\end{equation*}
$$

or equivalently :

$$
\begin{equation*}
\sum_{\mu=0}^{p-1} e_{p, \mu}^{x}=e^{x} \tag{3.25}
\end{equation*}
$$

Proof :

$$
\begin{align*}
\left(\sum_{\mu=0}^{p-1} \frac{\partial^{\mu}}{\partial x^{\mu}}\right) e_{p}^{x} & =e_{p}^{x}+\frac{\partial}{\partial x} e_{p}^{x}+\ldots+\frac{\partial^{p-1}}{\partial x^{p-1}} e_{p}^{x} \\
& =\sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!}+\frac{\partial}{\partial x} \sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!}+\ldots+\frac{\partial^{p-1}}{\partial x^{p-1}} \sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!} \\
& =\sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!}+\sum_{k=1}^{\infty} \frac{x^{p k-1}}{(p k-1)!}+\ldots+\sum_{k=1}^{\infty} \frac{x^{p k-p+1}}{(p k-p+1)!} \\
& =\sum_{k=0}^{\infty} \frac{x^{p k}}{(p k)!}+\sum_{k=0}^{\infty} \frac{x^{p k+p-1}}{(p k+p-1)!}+\ldots+\sum_{k=0}^{\infty} \frac{x^{p k+1}}{(p k+1)!} \\
& =e_{p}^{x}+e_{p, p-1}^{x}+\ldots+e_{p, 1}^{x} \\
\left(\sum_{\mu=0}^{p-1} \frac{\partial^{\mu}}{\partial x^{\mu}}\right) e_{p}^{x} & =e^{x} \tag{3.26}
\end{align*}
$$

Now we introduced the p-exponential, we can use it to solve somes differential equations. In fact, this is why I created it, the exponential solve the limit of the first order differential equation in the traditional Taylor formula whereas the p-exponential solve the limit of the pth order differential equation in (1.6).

Proposition 4. Let the differential equation

$$
\begin{equation*}
\frac{\partial^{p} u(x)}{\partial x^{p}}=u(x) \tag{3.27}
\end{equation*}
$$

$\exists \alpha_{1}, \ldots, \alpha_{p}$ such that the solution of (3.27) can be expressed as :

$$
\begin{equation*}
u(x)=\sum_{k=1}^{p} \alpha_{k} \quad e_{p} \omega_{p}^{k} x \tag{3.28}
\end{equation*}
$$

where $\omega_{p}=e^{\frac{2 i \pi}{p}}$ is the p-th root of unity.

Proof:

$$
\begin{align*}
\frac{\partial^{p} u(x)}{\partial x^{p}} & =\sum_{k=1}^{p} \alpha_{k} \frac{\partial^{p}}{\partial x^{p}} e_{p}^{\omega_{p}^{k} x} \\
& =\sum_{k=1}^{p} \alpha_{k}\left(\frac{\partial\left(\omega_{p}^{k} x\right)}{\partial x} \frac{\partial}{\partial\left(\omega_{p}^{k} x\right)}\right)^{p} e_{p}^{\omega_{p}^{k} x} \\
& =\sum_{k=1}^{p} \alpha_{k} \omega_{p}^{p k} e_{p}^{\omega_{p}^{k} x} \\
\frac{\partial^{p} u(x)}{\partial x^{p}} & =u(x) \tag{3.29}
\end{align*}
$$

Example :

As an example of (3.27), we solve the well-know case :

$$
\begin{equation*}
\frac{\partial^{2} u(x)}{\partial x^{2}}=u(x) \tag{3.30}
\end{equation*}
$$

The formula (3.28) gives the solution :

$$
\begin{align*}
& u(x)=\alpha_{1} e_{2}^{x}+\alpha_{2} e_{2}^{-x} \\
& u(x)=\alpha_{1} \cosh (x)+\alpha_{2} \cosh (-x) \tag{3.31}
\end{align*}
$$

where $\alpha_{1}, \alpha_{2} \in \mathbb{C}$ depend on the initial conditions.

Now we define the p-cosinus and p-sinus functions
Definition 2. The p-cosinus is the real part of the complex exponential given by

$$
\begin{equation*}
\cos _{p}(x)=\frac{e_{p}^{i x}+e_{p}^{-i x}}{2} \tag{3.32}
\end{equation*}
$$

We draw the 6 first p-cosinus

Figure 2 - The six first p-cosinus

Definition 3. The p-sinus is the imaginary part of the complex exponential given by

$$
\begin{equation*}
\sin _{p}(x)=\frac{e_{p}^{i x}-e_{p}^{-i x}}{2 i} \tag{3.33}
\end{equation*}
$$

We draw the 6 first p-sinus

Figure 3 - The six first p-sinus

Definition 4. The p-tangent is given by

$$
\begin{equation*}
\tan _{p}(x)=\frac{\sin _{p}(x)}{\cos _{p}(x)} \tag{3.34}
\end{equation*}
$$

We draw the 6 first p-tangent

Figure 4 - The six first p-tangent

Discussion

Even if the limit of the sum of two elements seems to be

$$
\begin{equation*}
\lim _{x+y \rightarrow \infty} e_{p}^{x+y}=\frac{1}{p} e^{x} e^{y} \tag{3.35}
\end{equation*}
$$

on the graph for $p \geq 2$, I didn't find a simple relation between the sum of arguments and the product of exponentials. In a same way, we don't have an equivalent of the Moivre formula which links the n-th power of the exponential with the multiplication with n of the argument. However this relation seems to exist on the graph if we consider it in the infinity limit :

$$
\begin{equation*}
\lim _{x \rightarrow \infty} e_{p}^{n x}=\frac{1}{p}\left(e^{x}\right)^{n} \tag{3.36}
\end{equation*}
$$

for $p \geq 2$
In addition I also search for the value of the module of the p-exponential but it seems to not have a fixed valued on the graph. So on the graph, it seems to be :

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \cos _{p}^{2}(x)+\sin _{p}^{2}(x)=\infty \tag{3.37}
\end{equation*}
$$

for $p \geq 3$. There is an exception for $p=2$ because $e_{2}=\cosh$ and we have that:

$$
\begin{equation*}
\left|e_{2}{ }^{i x}\right|=\cos (x) \tag{3.38}
\end{equation*}
$$

For now, I didn't find yet the inverse function of the p-exponential or of the generalized exponential function. I tried finding an expression for the derivate of the "p-logarithm" :

$$
\begin{equation*}
\left.\frac{\partial \ln _{p}(x)}{\partial x}\right|_{x=e_{p} x}=\frac{1}{e_{p, p-1}^{x}} \tag{3.39}
\end{equation*}
$$

but we need a relation between the p-exponential e_{p}^{x} and its derivate $e_{p, p-1}^{x}$ other than the derivation relation itself.

Références

[1] Arm B. N., The Arm Theory
[2] Bologna M., Short Introduction to Fractional Calculus

