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Abstract
We construct the equivalent of the Taylor

formula in the basis of all roots
{x− k}K when K is Z⊕ iZ,

Q⊕ iQ and C.



Introduction

The Taylor formula is the decomposition of a vector (a function) on a the monomial basis. Again
the Fourier theory is the decomposition of a vector (a periodic function) on the complex exponential
basis. In this case why a polynom couldn’t be decomposed on the base {(x − k)}k∈C ? Getting this
decomposition is the main goal of this paper.

To get a decomposition on a basis, we first need to find the corresponding scalar (or inner) product
of this space. To find this scalar product, we have to create a Kronecker delta. I solved this question
in building this Kronecker between a discret variable k and a root rp of the considered polynom Z(z) :

δk,rp = lim
z→k

z − k
z − rp

(0.1)

which is always zero except when k is rp. Inspiring the Taylor formula, we identify

lim
z→k

(z − k)

(z − rp)mp
= lim

z→k
(z − k)

l∑
p=1

1

(z − rp)mp
= lim

z→k
(z − k)

∂

∂x
ln(Z(z)) (0.2)

where mp is the multiplicity of the root rp and
∑l

p=1mp = n = deg(Z). The basic Z-Arm factorization
is this decomposition given in (1.6) for polynoms Z with roots in Z⊕ iZ.

Next I remarked that, if a polynom Q(z) has its roots in Q and if we succed to find the common
denominator q of all roots, then the polynom P (xq ) would have roots in Z. This mysterious com-

mon denominator q can be seen in the summation of roots σ1 (the coefficient before xn−1 modulo a
constant). This idea leads to the Q-Arm factorization which is the decomposition given in (3.17) for
polynom with roots in Q⊕ iQ.

Furthermore, I searched for a final decomposition for all polynoms C(z) i.e. with roots in C. The
problem is that we can’t inspire of which is done before because roots are only points on the real axis
and we need other tools for this decomposition. The tools I used to sum is of course the integration
on the complex plane and that I used to make the integral nonzero is naturally the Dirac distribution
δ(C(z)) to give the roots modulo the multiplication by a derivate. Unhappynessly, this decomposition
doesn’t work for polynoms with nonsimple roots. I also introduced in the Remark 3 the notion of
the Dirac distribution of a complex variable which is no well defined yet so the C-Arm factorization
doesn’t work yet for complex. Thus the C-Arm factorization is the application of those ideas for all
polynom C(z) with roots in C.

In the first section, we introduce the Z-Arm decomposition for polynom Z(z) with roots in Z⊕ iZ.
This decomposition gives the logarithm of the polynom, so we give in a corollary the exponential of
the Z-Arm factorization. In the second section, we illustrate this decomposition with the example of :

Z(z) = 2z(z − 1 + 3i)(z − 2− 4i) (0.3)
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In the third section, we give the Q-Arm factorization of a polynom Q(z) with roots in Q⊕ iQ and its
exponential. In the fourth section, we apply it to the example of

Q(z) = 2

(
z − 1

2
− 1

3
i

)(
z − 2

3
− 1

2
i

)
(0.4)

Also in the fifth section, we give the C-Arm factorization of a polynom with simple roots in C and we
apply it in the sixth section to the example of real roots :

C(x) = 3(x− e)(x− π2) (0.5)
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1 Z-Arm Factorization

Let Z(z) be a polynom with zeros in Z ⊕ iZ i.e. Z(z) = 0 ⇐⇒ z ∈ Z ⊕ iZ where i =
√
−1. Then

we have the following result

Theorem 1. The Z-Arm factorization of Z(z) is given by :

ln(Z(z)) = ln(α) +
∞∑

k=−∞

∞∑
k′=−∞

[
lim

z→k+ik′
(z − k − ik′) ∂

∂z
ln(Z(x))

]
ln(z − k − ik′) (1.6)

where the constant α is given by : α = 1
n!

∂nZ(z)
∂zn and n is n = deg(Z(z))

Proof :
Let {

r1 + ir′1, r2 + ir′2, ...., rn + ir′n

}
(1.7)

be all the zeros of the polynom Z(z) such that ∀p, rp, r′p ∈ Z. Then we can show that the coefficients
of (1.6) are a scalar product between the elements {ek,k′ = (z−k− ik′)}k,k′∈Z of the basis of the space
(z − Z− iZ) i.e. < ek,k′ , erp,r′p >= δk,rpδk′,r′p :

< ek,j , erp,r′p > = lim
z→k+ik′

(z − k − ik′) ∂
∂z

ln(z − rp − ir′p)

= lim
z→k+ik′

(z − k − ik′)
(z − rp − ir′p)

< ek,j , erp,r′p > = δk,rpδk′,r′p (1.8)

Next, we can factorize Z(z) and write it with its zeros (1.7) :

Z(z) = α

n∏
p=1

(
z − rp − ir′p

)
(1.9)

where α is the coefficient before zn. It’s trivial to show that we can obtain this coefficient is :

α =
1

n!

∂nZ(z)

∂zn
(1.10)
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So, given (1.8), we can write Z(z) as :

Z(z) = α
n∏
p=1

(
z − rp − ir′p

)

= α
∞∏

k=−∞

∞∏
k′=−∞

n∏
p=1

(z − k − ik′)δrp,kδr′p,k′

Z(z) = α

∞∏
k=−∞

∞∏
k′=−∞

n∏
p=1

(z − k − ik′)limz→k+ik′ (z−k−ik′)
∂
∂z

ln(z−rp−ir′p)

Z(z) = α

∞∏
k=−∞

∞∏
k′=−∞

(z − k − ik′)limz→k+ik′ (z−k−ik′)
∂
∂z

∑n
p=1 ln(z−rp−ir′p)

Z(z) = α
∞∏

k=−∞

∞∏
k′=−∞

(z − k − ik′)limz→k+ik′ (z−k−ik′)
∂
∂z

ln(Z(z)) (1.11)

As a result, we can take the logarithm of (1.11) and we get the formula (1.6).

�

We can reformulate the formula (1.6) in

Corollary 1. For each polynom with zero in Z⊕ iZ, we have the decomposition

Z(z) = α

∞∏
k=−∞

∞∏
k′=−∞

(z − k − ik′)limz→k+ik′ (z−k−ik′)
∂
∂z

ln(Z(z)) (1.12)

where α is given in Theorem 1.

Proof : See the proof of Theorem 1

�

Remark 1. It is evident that a polynom with zeros in Z instead of Z⊕ iZ can be decompose with (1.6)
or (1.12), it correspond to the case of k′ = 0

Remark 2. The logarithm of a complex variable is well defined :

ln(z) = ln(|z|) + iarg(z) (1.13)

where |z| is the modulus of z and arg(z) is its argument.

2 Example Of Z-Arm Factorization

We now take the example of

Z(z) = (−72− 104i)z + (32 + 24i)z2 − (10 + 10i)z3 + 2z4 (2.14)
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We can see that the degree of Z(z) is n = 4 and the coefficient before zn is α = 2. Then applying
(1.6), we have the decomposition :

ln(Z(z)) = ln(2) +
∞∑

k=−∞

∞∑
k′=−∞

[
lim

z→k+ik′
(z − k − ik′) ∂

∂z
ln(Z(z))

]
ln(z − k − ik′)

= ln(2) +

[
lim
z→0

x
∂

∂z
ln

(
(−72− 104i)z + (32 + 24i)z2 − (10 + 10i)z3 + 2z4

)]
ln(z)

+

[
lim

z→1−3i
(z − 1 + 3i)

∂

∂z
ln

(
(−72− 104i)z + (32 + 24i)z2 − (10 + 10i)z3 + 2z4

)]
ln(z − 1 + 3i)

+

[
lim

z→2+4i
(z − 2− 4i)

∂

∂z
ln

(
(−72− 104i)z + (32 + 24i)z2 − (10 + 10i)z3 + 2z4

)]
ln(z − 2− 4i)

= ln(2) +

[
lim
z→0

z
(−72− 104i) + (64 + 48i)z − (30 + 30i)z2 + 8z3

(−72− 104i)z + (32 + 24i)z2 − (10 + 10i)z3 + 2z4

]
ln(z)

+

[
lim

z→1−3i
(z − 1 + 3i)

(−72− 104i) + (64 + 48i)z − (30 + 30i)z2 + 8z3

(−72− 104i)z + (32 + 24i)z2 − (10 + 10i)z3 + 2z4

]
ln(z − 1 + 3i)

+

[
lim

z→2+4i
(z − 2− 4i)

(−72− 104i) + (64 + 48i)z − (30 + 30i)z2 + 8x3

(−72− 104i)z + (32 + 24i)z2 − (10 + 10i)z3 + 2z4

]
ln(z − 2− 4i)

ln(Z(z)) = ln(2) + 2 ln(z − 2− 4i) + ln(z − 1 + 3i) + ln(z) (2.15)

So we have, in taking the exponential of each parts :

Z(z) = 2z(z − 1 + 3i)(z − 2− 4i)2 (2.16)

Maybe this example is a little bit difficult concerning the calculation. Of course, I programmed an
algorithm on mathematica which did the calculation for me. Besides, I already knew what the zeros
of Z(z) were. If the reader wants, he can take a more simple example like Z(z) = (z − 1)(z − 2) but I
took this example to show it works with multiplicity 2 and with complex integer.

3 Q-Arm Factorization

Now I generalize the Z-Arm Factorization for polynom which have zeros in Q ⊕ iQ and I call it
the Z-Arm Factorization. Let Q(z) be a polynom with zeros in Q⊕ iQ i.e. Q(z) = 0⇐⇒ z ∈ Q⊕ iQ
where i =

√
−1. Then we have the following result

Theorem 2. The Q-Arm factorization of Q(z) is given by :

ln(Q(z)) = ln(α) +
∞∑

k=−∞

∞∑
k′=−∞

[
lim

z→ k+ik′
q

(
z − k + ik′

q

)
∂

∂z
ln(Q(z))

]
ln

(
z − k + ik′

q

)
(3.17)

where α = 1
n!
∂nQ(z)
∂zn and q is the denominator of σ1 ∈ Q

(
the coefficient before zn−1 of Q(z)

α if
n = deg(Q(z))

)
.
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Proof :
As we do for the proof of Theorem 1, we write the zeros of the polynom Q(z) :{

r1
q1

+ i
r′1
q′1
, ....,

rn
qn

+ i
r′n
q′n

}
(3.18)

with ∀p, rp, r′p, qp, q′p ∈ Z. Then we can write Q(z) as :

Q(z) = α
n∏
p=1

(
z − rp

qp
+ i

r′p
q′p

)
(3.19)

Besides, we know that

σ1 =
n∑
p=1

rp
qp

+ i
r′p
q′p

(3.20)

If we denote 1
q = gcd( r1q1 , ...,

rn
qn
,
r′1
q′1
, ..., r

′
n
q′n

) then ∃αp = q
qp
, α′p = q

q′p
∈ Z such that

σ1 =

n∑
p=1

αprp + α′pr
′
p

q
(3.21)

So we can rewrite Q(z) in (3.19) as

Q(z) = α
n∏
p=1

(
z −

αprp + α′pr
′
p

q

)
(3.22)

Now we can write that :

qn Q

(
z

q

)
= α

n∏
p=1

(
z − αprp + α′pr

′
p

)
(3.23)

wich is a polynom with zeros in Z. So we can use Theorem 1 to obtain its Z-Arm fractorization :

ln

(
qnQ

(
z

q

))
= ln(α) +

∞∑
k=−∞

∞∑
k′=−∞

[
lim

z→k+ik′
(z−k− ik′) ∂

∂z
ln

(
qnQ

(
z

q

))]
ln(z−k− ik′) (3.24)

where

α =
qn

n!

∂nQ( zq )

dzn
=

1

n!

∂nQ(z)

dzn
(3.25)

We can rewrite (3.24) as

ln(Q(z)) = ln(α) +
∞∑

k=−∞

∞∑
k′=−∞

[
lim

z→k+ik′
(z − k − ik′) ∂

∂z
ln

(
qnQ

(
z

q

))]
ln

(
z − k + ik′

q

)
(3.26)

If you make the changing of variable z′ = z
q in the limit (3.26), you wil have the formula :

ln(Q(z)) = ln(α) +
∞∑

k=−∞

∞∑
k′=−∞

[
lim

z→ k+ik′
q

(
z − k + ik′

q

)
∂

∂z
ln(Q(z))

]
ln

(
z − k + ik′

q

)
(3.27)

which gives the Q-Arm factorization (3.17) because ln(qn) is constant.

�
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Now, we can reformulate the formula (3.17) in

Corollary 2. For each polynom with zero in Q⊕ iQ, we have the decomposition

Q(z) = α

∞∏
k=−∞

∞∏
k′=−∞

(
z − k + ik′

q

)lim
z→ k+ik′

q

(z− k+ik′
q

) ∂
∂z

ln(Q(z))

(3.28)

where α, q and n are given in Theorem 2.

Proof :
Take the exponential of (3.17)

�

4 Example Of Q-Arm Factorization

We choose to take the example of :

Q(z) =
1

3
+

17

18
i−
(

7

3
+

5

3
i

)
z + 2z2

Q(z) =

(
6 + 17i

36
− 7 + 5i

6
z + z2

)
2 (4.29)

Then we have that σ1 = −7+5i
6 so we can see that q = 6 and α = 2.

So with (3.17), we have :

ln(Q(z)) = ln(α) +

∞∑
k=−∞

∞∑
k′=−∞

[
lim

z→ k+ik′
q

(z − k + ik′

q
)
∂

∂z
ln

(
qnQ(z)

)]
ln

(
z − k + ik′

q

)
= ln(2) +

[
lim

z→ 3+2i
6

(z − 3 + 2i

6
)
∂

∂z
ln

(
62
(

1

3
+

17

18
i−
(

7

3
+

5

3
i

)
z + 2z2

))]
ln

(
z − 3 + 2i

6

)
+

[
lim

z→ 4+3i
6

(z − 4 + 3i

6
)
∂

∂z
ln

(
62
(

1

3
+

17

18
i−
(

7

3
+

5

3
i

)
z + 2z2

))]
ln

(
z − 3 + 2i

6

)
= ln(2) +

[
lim

z→ 3+2i
6

(z − 3 + 2i

6
)

−42− 30i+ 72z

6 + 17i− (42 + 30i)z + 36z2

]
ln

(
z − 3 + 2i

6

)
+

[
lim

z→ 4+3i
6

(z − 4 + 3i

6
)

−42− 30i+ 72z

6 + 17i− (42 + 30i)z + 36z2

]
ln

(
z − 4 + 3i

6

)
ln(Q(z)) = ln(2) + ln

(
z − 4 + 3i

6

)
+ ln

(
z − 3 + 2i

6

)
(4.30)

We can rewrite (4.30) as :

Q(z) = 2

(
z − 1

2
− 1

3
i

)(
z − 2

3
− 1

2
i

)
(4.31)
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Now, I try to generalize the Z-Arm factorization in the C-Arm factorization

5 C-Arm Factorization

Let C(z) be a polynom with simple roots in C i.e. C(z) = 0⇐⇒ z ∈ C. Then we have the following
result

Theorem 3. The C-Arm factorization of C(z) is given by :

ln(C(z)) = ln(α) +

∫
C
dk δ(C(k))

∣∣∣∣∂C(k)

∂k

∣∣∣∣ ln(z − k) (5.32)

where α = 1
n!
∂nQ(z)
∂zn , n = deg(C), | | the absolute value and δ is the Dirac distribution which can be

define as

δ(k) =
1

2π

∫ ∞
−∞

dx eikx (5.33)

Proof :
Let {

r1, ..., rn

}
∈ Cl (5.34)

the collection of all roots of C(z).
Because of the definition (5.33) of the Dirac distribution and the equality

δ(C(k)) =
n∑
p=1

δ(k − rp)
∣∣∣∣ ∂k

∂C(k)

∣∣∣∣ (5.35)

we can write :

ln(C(z)) = ln

(
α

n∏
p=1

(z − rp)
)

= ln(α) +
n∑
p=1

ln(z − rp)

= ln(α) +
n∑
p=1

∫
C
dk δ(k − rp) ln(z − k)

= ln(α) +

∫
C
dk

( n∑
p=1

δ(k − rp)
∣∣∣∣ ∂k

∂C(k)

∣∣∣∣) ∣∣∣∣∂C(k)

∂k

∣∣∣∣ ln(z − k)

ln(C(z)) = ln(α) +

∫
C
dk δ(C(k))

∣∣∣∣∂C(k)

∂k

∣∣∣∣ ln(z − k) (5.36)

which is (5.32).

�
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Remark 3. The definition of the Dirac distribution δ(k) (5.33) with k ∈ C is well defined since

δ(k) =
1

2π

∫ ∞
−∞

dx ei( Re(k) + iIm(k) )x

δ(k) =
1

2π

∫ ∞
−∞

dx ei Re(k) xe−Im(k) x (5.37)

Corollary 3. Each polynom C(z) is given by it’s exponential C-Arm Factorization

C(z) = αe
∫
C dk δ(C(k)) | ∂C(k)

∂k
| ln(z−k) (5.38)

where α, δ are given in Theorem 3.

6 Example of C-Arm Factorization

Because mathematica don’t know yet what is the dirac distribution of a compkex number, we
decide to choose an example with reals roots.

Let
C(x) = 3x2 + 3eπ2 + 3x(−e− π2) (6.39)

for x ∈ R, we can see that the coefficient before xn=2 is α = 3.
Hence formula (5.32) give :

ln(C(x)) = ln(α) +

∫
R
dk δ(C(k))

∣∣∣∣∂C(k)

∂k

∣∣∣∣ ln(x− k)

= ln(3) +

∫
R
dk δ(3k2 + 3eπ2 + 3k(−e− π2))

∣∣∣∣6k + 3(−E − π2)
∣∣∣∣ ln(x− k)

ln(C(x)) = ln(3) + ln(−e+ x) + ln(−π2 + x) (6.40)

If we take the exponential of (6.40), we obtain :

C(x) = 3(x− e)(x− π2) (6.41)
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Discussion

I’ve tried the formula (5.32) for polynom with simple root, it works. But if we take a polynom with
multiple roots there would be problems with δ((x− rp)mp) I don’t know why. By constrast the Z-Arm
Factorization and the Q one work for roots with multiplicity greater than one.

Again the Dirac distribution of a complex variable is not well defined yet but I still tried to used
it because it extend the C-Arm factorization to complex roots. I hope in the future somebody will
succed to used this formula for complex roots. But for now mathematica seems to not understand
when I ask it the Dirac distribution of a complex variable.

When we look at the formula (3.17) of the Q-Arm factorization, we remark that the quotient k+ik′

q ,

which is discret numbers, would be continue if we take the limit q →∞. So if we change q′ = qb and
taking q′, b → ∞, we will obtain an integral on reals numbers. But the problem is that this integral
will be zero because roots a polynom are only points of the real axis. This is why we need a Dirac
delta to make the integral nonzero.
Concerning the equation (5.38), there is a exponential of an integral. Instead of this expression, we
want to do the same thing as (3.28) : obtain a product on discret variable to recognize the polynom. But
the problem is that there is an integral in the expression (5.38) and not a simple discret summation.
Then why not construct a continue product summation ?

e
∫ b
a f(x)dx = lim

n→∞
e
∑n

k=0
b−a
n
f(

k(b−a)
n

) = lim
n→∞

n∏
k=0

e
b−a
n
f(

k(b−a)
n

) (6.42)

Maybe the starting point of a latter work...
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