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Abstract
We study the Borel algebra define by [xa, xb] = 2λδa,1xb

as a noncommutative manifold R3
λ. We calculate its

noncommutative differential form relations. We deduce
its partial derivative relations and the derivative
of a plane wave. After calculating its de Rham
cohomology, we deduce the wave operator and

its corresponding magnetic solution.



1 Introduction

In this paper, we start with the Borel algebra sb(2,C)

[Ja, Jb] = 2δa,1Jb (1.1)

If ones believes in Born reciprocity, then there is also theoretical possibility of a sphere, which corres-
ponds to the algebra

[xa, xb] = 2λδa,1xb (1.2)

In this paper, we study this algebra as a noncommutative manifold R3
λ. In fact, we consider xi as

coordinates of a noncommutative position space with λ the length dimension.

In section 2, we introduce modern quantum group method : we define the Hopf algebras U(sb(2,C))
and C(SB(2,C)) and the pairing between them. We explicit the different action acting on them.

In section 3, we apply this action to the quantum double D(U(sb(2,C))) = C(SB(2,C))Ad∗L o
U(sb(2,C)).

In section 4, with a representation of sb(2,C), we can calculate the noncommutative relations
between 1-forms which gives

[xa,dxb] = δa,1(1− δb,1)λdxb − δb,1λdxa (1.3)

and the derivative of a general monomial (4.41). With relations (1.3), we can deduce the expression
of partial derivative (4.42) and calculate the derivative of wave

deik.x = dx.ike−iλk1eik.x (1.4)

Next, we show that the noncommutative de Rham cohomology of R3
λ is given by

H0 = C.1, H1 = H2 = H = 3 = {0} (1.5)

In section 5, we compute the Hodge ∗-operator. Finally, in section 6, 7 and 8, we compute the wave
operator of a plane wave, the kernel of this operator and the gauge potential of a magnetic solution.

This paper is widely inspired of the work of [1] which is done for U(su(2)) instead of U(sb(2))
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2 Mathematical preliminaries

The Iwasawa decomposition allows us to decompose :

sl(2,C) = su(2,C)⊕ sb(2,C) (2.6)

where sb(2,C) is the Lie algebra of the Borel subgroup SB(2,C) with commutation relations :

[J1, J2] = 2J2, [J1, J3] = 2J3, [J2, J3] = 0 (2.7)

The element of sb(2,C) are generated by

J1 =

(
1 0
0 −1

)
, J2 =

(
0 1
0 0

)
, J3 =

(
0 i
0 0

)
(2.8)

Here we outline some notions from quantum group theory into which our example fits. For Hopf
algebras (i.e. quantum groups), we use the convention of [5] . It means an algebra H equipped with
a coproduct ∆ : H → H ⊗ H, counit ε : H → C and antipode S : H → H. We will sometimes use
the formal sum notation ∆(a) =

∑
a(1) ⊗ a(2), for any a ∈ H. The usual universal enveloping algebra

U(sb(2,C)) has a structure of cocommutative Hopf algebra generated by 1 and Ja, a = 1, 2, 3 with
relations (2.7) and

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja, ε(Ja) = 0, S(Ja) = −Ja (2.9)

We also recall that for an Abelian groups, for each Hopf algebra there is a dual one where the product
of one is adjoint to the coproduct of the other. U(sb(2,C)) is dually paired with the commutative
Hopf algebra C(SB(2,C)) generated by coordinate functions ti j , for i, j = 1, 2 on SB(2,C) satisfying

the determinant relation t1 1t
2

2 − t1 2t
2

1 = 1 and with :

∆(ti j) =
2∑

k=1

ti k ⊗ tk j , ε(ti j) = δij , Sti j = (ti j)
−1 (2.10)

where inversion is an algebra-valued matrix. The pairing between the algebras U(sb(2,C)) and C(SB(2))
is defined by

< ξ, f >=
d

dt
f(etξ)|t=0 (2.11)

where ξ ∈ sb(2,C) and f ∈ C(SB(2,C)) which results in particular in :

< Ja, t
i
j >= J i

a j (2.12)

where J i
a j are the i, j entries of the matrix Ja, a = 1..3.
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We also need standard notions of actions and coactions. A left coaction of a Hopf algebra H on a
space V means a map V → H ⊗V obeying axioms like those of an action but reversing all maps. So a
coaction of C(SB(2,C)) essentially corresponds to an action of U(sb(2,C)) via the pairing. Examples
are :

AdL(h)(g) = h� g =
∑

h(1)gS(h(2)) (2.13)

the left adjoint action. AdL : H ⊗H → H. Its arrow-reversal is the left adjoint coaction AdL : H →
H ⊗H,

AdL(h)(g) =
∑

h(1)S(h(3))⊗ h(2) (2.14)

There are also the regular action (given by the product), regular coaction (given by ∆ : H → H ⊗H),
and coadjoint actions and coregular actions of the dual, given via the pairing from the adjoint and
regular coactions, etc [5]. We will nedd the left coadjoint action of H on a dual quantum group A :

Ad∗L(h)(φ) = h� φ =
∑

φ(2) < (Sφ(1))φ(2), h >, ∀h ∈ H, φ ∈ A (2.15)

and the right coregular action of A on H which we will view as a left action of the opposite algebra
Aop :

φ� h =
∑

< φ, h(1) > h(2), ∀h ∈ H, φ ∈ A (2.16)

Given a quantum group H dual to a quantum group A, there is a quantum double written loosely as
D(H) and containing H,A as sub-Hopf algebras. More precisely it is a double cross product Aop ./
H where there are cross relations given by a mutual coadjoint actions [5]. Also, D(H) is formally
quasitriangular in the sense of a formal ’universal R matrix’ R with terms in D(H) ⊗ D(H). The
detailed structure of D(U(sb(2,C))) is covered in Section 3 and in this case is more simply a semidirect
product C(SB(2,C)) o U(sb(2,C)) by the coadjoint action.

Finally, we will need the notion of differential calculus on an algebra H. This is common to several
approaches to noncommutative geometry including that of Connes [2] . A first order calculus means
to specify (Ω1, d), where Ω1 is an H −H-bimodule, d : H → Ω1 obeys the Leibniz rule,

d(hg) = (dh)g + h(dg) (2.17)

and Ω1 is spanned by elements of the form (dh)g. A bimodule just means that one can multiply ’1-
forms’ in Ω1 by ’functions’ in H from the left and right coactions of H in Ω1 (a bicomodule) which
are themselves bimodule homomorphisms, and d interwines the coactions with the regular coactions
of H on itself. Given a bicovariant calculus one can find invariant forms

ω(h) =
∑

(dh(1))Sh(2) (2.18)

for any h ∈ H. The span of such invariant forms is a space Λ1 and all of Ω1 can be reconstructed from
them via

dh =
∑

ω(h(1))h(2) (2.19)

As a result, the construction of a differential structure on a quantum group rests on that of Λ1, with
Ω1 = Λ1.H. They in turn can be constructed in the form

Λ1 = ker ε/I (2.20)
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where I ⊂ ker ε is some left ideal in H that is AdL-stable [7]. We will use this method in Section 4
to introduce a reasonable calculus on U(sb(2,C)). Some general remarks (but not our calculus, which
seems to be new) appared in [6].

Any bicovariant calculus has a ’minimal’ extension to an entire exterior algebra [7]. One uses the
universal R-matrix of the quantum double to define a braiding operator on Λ1 ⊗ Λ1 and uses it
to ’antisymmetrize’ the formal algebra generated by the invariant forms. These and elements of H
define Ω in each degree. In our case of U(sb(2,C)), because it is cocommutative, the braiding is the
usual flip. Hence we have the usual anticommutation relations among invariant forms. We also extend
d :Ωk → Ωk+1 as a (right-handed) super derivation by :

d(ω ∧ η) = ω ∧ dη + (−1)degηdω ∧ η (2.21)

A differential calculus is said to be inner if the exterior differentiation in Ω1 ( and hence in all degrees)
is given by the (graded) commutator with an invariant 1-form θ ∈ Λ1, that is

dω = ω ∧ θ − (−1)degωθ ∧ ω (2.22)

Almost all noncommutative geometries that one encounters are inner, which is the fundamental reason
that they are in many ways better behaved than the classical case.

3 The Qantum Double as Exact Isometries of R3
λ

In this section we first of all recall the structure of the quantum double D(U(sb(2,C))) in the
context of Hopf algebra theory. We will then explain its canonical action on a second copy R3

λ
∼=

U(sb(2,C)) arising from the general Hopf algebra theory, thereby presenting it explicitly as an exact
quantum symmetry group of that. Here xa = λJa is the isomorphism valid for λ 6= 0. By an exact
quantum symmetry we mean that the quantum group acts on R3

λ with the product of R3
λ an in-

tertwiner (i.e. the algebra is covariant). Because U(sb(2,C)) is cocommutative, its quantum double
D(U(sb(2,C))) is a usual crossed product [5]

D(U(sb(2,C))) = C(SB(2,C))Ad∗L o U(sb(2,C)) (3.23)

where the action is induced by the adjoint action (it is the coadjoint action on C(SB(2,C))). This
crossed product is isomorphic as a vector space with C(SB(2,C)) ⊗ U(sb(2,C)) but with algebra
structure given by

(a⊗ h)(b⊗ g) =
∑

aAd∗
Lh(1)

(b)⊗ h(2)g (3.24)

for a, b ∈ C(SB(2,C)) and h, g ∈ U(sb(2,C)). In terms of the generators, the left coadjoint action
(2.15) takes the form

Ad
LJa(ti j) =

∑
tk l < Ja, S(ti k)t

l
j >= ti kJ

k
a l − J i

a kt
k
j (3.25)

As a result we find thatD(U(sb(2,C)) is generated by U(sb(2,C)) and C(SB(2,C)) with cross relations

[Ja, t
i
j ] = ti kJ

k
a l − J i

a kt
k
j (3.26)
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Meanwhile the coproducts are the same as those of U(sb(2,C)) and C(SB(2,C)). Next, a general
feature of any quantum double is a canonical or ’Schrodinger’ representation, where U(sb(2,C)) ⊂
D(U(sb(2,C))) acts on U(sb(2,C)) by the left adjoint action (2.13) and C(SB(2,C)) ⊂ D(U(sb(2,C)))
acts by the coregular one (2.16), see [5]. We denote the acted-upon copy by R3

λ. Then Ja simply acts
by

Ja � f(x) = λ−1
∑

xa(1)f(x)S(xa(2)) = λ−1[xa, h],∀f(x) ∈ R3
λ (3.27)

e.g.
Ja � xb = 2δa,1xb (3.28)

with the co-regular action reads

ti j � f(x) =< ti j , f(x)(1) > f(x)(2), e.g. ti j � xa = λJ i
a k1 + δi jxa (3.29)

The general expression is given by a shuffle product (see Section 4). With this action, R3
λ turns into a

left D(U(sb(2,C)))-covariant algebra.

4 The 3-Dimensional Calculus on R3
λ

The purpose of this section is to construct a bicovariant calculus on the algebra R3
λ following the

steps outlined in Section 2, the calculus we obtain being that on the algebra U(sb(2,C)) on setting
λ = 1. We write R3

λ as generated by x1, x2 and x3, say, and with the Hopf algebra structure given
explicitly in terms of the generators as

[x1, x2] = 2λx2; [x1, x3] = 2λx3; [x2, x3] = 0 (4.30)

and the additive coproduct as before. The particular form of the coproduct, the relations and (2.18)
shows that dξ = ω(ξ) for all ξ ∈ sb(2,C). Because of the cocommutativity, all ideals in R3

λ are classified
simply by the ideals I ⊂ ker ε. In general the coirreductible calculi (i.e. having no proper quotients)
are labelled by pairs (Vρ,Λ), with ρ : U(g) →EndVρ an irreductible representation of U(g) and Λ a
ray in Vρ. In order to construct an ideal of ker ε, take the map

ρΛ : U(g)→ Vρ, h 7−→ ρ(h).Λ (4.31)

It is easy to see that kerρΛ is a left ideal in ker ε. Then, if ρΛ is surjective, the space of 1-forms can
be identified with Vρ = ker ε/ ker ρΛ. The general commutation relations are

av = va+ ρ(a).v (4.32)

and the derivative for a general monomial ξ1...ξn is given by the expression

d(ξ1...ξn) =
1

λ

n∑
k=1

∑
σ∈S(n,k)

ρΛ(ξσ(1)...ξσ(k))ξσ(k+1)...ξσ(n) (4.33)

We explore some examples of coirreductible calculi for the universal enveloping algebra R3
λ, generated

by x1, x2 and x3 satisfying (4.30). First, let us analyse the three dimensional, coirreductible calculus
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on R3
λ by taking Vρ = C3, with basis

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 (4.34)

In this basis, the representation ρ takes the form

ρ(x1) = λ

 1 0 0
0 1 0
0 0 −1

 , ρ(x2) = λ

 0 0 1
0 0 0
0 0 0

 , ρ(x3) = λ

 0 0 0
0 0 1
0 0 0

 (4.35)

We choose, for example, Λ = e3. The space of 1-forms will be generated by the vectors e1, e2 and e3.
The derivative of the generators of the algebra are given by

dx1 = λ−1ρ(x1).e3 = −e3, dx2 = λ−1ρ(x2).e3 = e1, dx3 = λ−1ρ(x3).e3 = e2 (4.36)

The commutation relations between the basic 1-forms and the generators can be deduced from (4.32)
giving

x1e1 = e1x1 + λe1

x1e2 = e2x1 + λe2

x1e3 = e3x1 − λe3

x2e1 = e1x2

x2e2 = e2x2

x2e3 = e3x2 + λe1

x3e1 = e1x3

x3e2 = e2x3

x3e3 = e3x3 + λe2 (4.37)

The compability conditions of this definition of the derivative with the Leibniz rule is due to the
following commutation relations between the generators of the algebra and the basic 1-forms :

x1dx2 = dx2x1 + dx2

x1dx3 = dx3x1 + λdx3

x1dx1 = dx1x1 − λdx1

x2dx2 = dx2x2

x2dx3 = dx3x2

x2dx1 = dx1x2 − λdx2

x3dx2 = dx2x3

x3dx3 = dx3x3

x3dx1 = dx1x3 − λdx3 (4.38)
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The commutation relations (4.38) have a simple expression :

[xa,dxb] = δa,1(1− δb,1)λdxb − δb,1λdxa (4.39)

In the classical limit, this calculus turns out to be the commutative calculus on usual three dimensional
Euclidean space. In this basis the partial derivatives defined by

df(x) = (dxa)∂
af(x) (4.40)

The explicit expression for the derivative of a general monomial xa1x
b
2x
c
3 is given

d(xa1x
b
2x
c
3) = −(1− δa,0) dx1

a∑
k=1

Aka(−1)kλk−1xa−k1 xb2x
c
3

+ dx2

a∑
k=0

Akabλ
kxa−k1 xb−1

2 xc3

+ dx3

a∑
k=0

Akacλ
kxa−k1 xb2x

c−1
3 (4.41)

here Akn = n!
(n−k)! is the number of k arrangment among n. The noncommutative partial derivatives ∂a

defined in (4.40) have the expressions to lowest order

∂1f(x) = ∂1f(x)− λ∂ 2
1 f(x)

∂2f(x) = ∂2f(x)− λ∂1∂2f(x)

∂3f(x) = ∂2f(x)− λ∂1∂3f(x) (4.42)

where ∂a are the usual derivatives in classical variables and we do not write the normal ordering on
expressions already O(λ) since the error is higher order

Next, the expression for the derivatives of plane waves is very simple. In terms of generators xa, the
derivative of the plane wave ei

∑
a k

axa = eik.x is given by

deik.x = dx.ike−iλk1eik.x (4.43)

One can see that the limit λ→ 0 gives the correct formula for the derivative of plane waves, that is

lim
λ→0

deik.x = (
3∑

a=1

ikadxa)e
ik.x = ik.(dx)eik.x (4.44)

where at λ = 0 on the right hand side we have the classical coordinates and the classical 1-forms in
usual three dimensional commutative calculus. We can check that the Casimir operator :

C = x2
1 (4.45)

have the derivative :
dC = 2dx1(x1 − λ) (4.46)
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We can also construct the full exterior algebra Ω(R3
λ) = ⊕∞n=0Ωn(R3

λ). In our case the general
building [7] becomes the trivial flip homomorphism because the right invariant basic 1-forms are
also left invariant. Hence our basic 1-forms in M2(C) are totally anticommutative and their usual
antisymmetric wedge product generates the usual exterior algebra on the vector space M2(C). The
full Ω(R3

λ) is generated by these and elements of R3
λ with the relations (4.38). The cohomologies of

this calculus were also calculated giving the following results :

Theorem 1. The noncommutative de Rham cohomology of R3
λ is

H0 = C.1, H1 = H2 = H3 = {0} (4.47)

Proof This is direct (and rather long) computation of the closed forms and the exact ones in each
degree using the explicit formula (4.41) on general monomials. To give an example of the procedure,
we will doit in some detail for the case of 1-forms. Take a general 1-form

ω = α(dx1)xa1x
b
2w

c
3 + β(dx2)xd1x

e
2x
f
3 + γ(dx3)xg1x

h
2x

i
3 (4.48)

and impose dω = 0. We start analysing the simplest cases, and then going to more complex ones.

Taking β = γ = 0, then
ω = α(dx1)xa1x

b
2w

c
3 (4.49)

The vanishing of the term dx2 ∧dx1 leads to the conclusion that b = 0. Similarly, the vanishing of the
term in dx3 ∧ dx1 leads to c = 0 so that :

ω = αdx1x
a
1 =

α

a+ 1
d(xa+1) (4.50)

which is an exact form, hence belonging to the null cohomology class. The cases α = γ = 0 and
α = β = 0 also lead to exact forms.

Let us now analyse the case with two non zero terms :

ω = α(dx1)xa1x
b
2w

c
3 + β(dx2)xd1x

e
2x
f
3 (4.51)

The vanishing condition in the term on dx1 ∧ dx2 reads

−α
a∑
k=0

Akabλ
kxa−k1 xb−1

2 xc3 = (1− δd,0)β
d∑

k=1

Akd(−1)kλk−1xd−k1 xe2x
f
3 (4.52)

Then we conclude that a = 0, d = 1, αb = β, b − 1 = e, c = f . The vanishing of the terms dx1 ∧ dx3

and dx2 ∧ dx3 reads αc = βf = 0. So we have c = f = 0 then

ω = αdx1x
b
2 + αbdx2x1x

b−1
2

= α[d(x1x
b
2)− dx2bλx

b−1
2 ]

ω = αd(x1x
b
2 − λxb2)

which is exact.
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Now consider the case
ω = β(dx2)xd1x

e
2x
f
3 + γ(dx3)xg1x

h
2x

i
3 (4.53)

The vanishing condition in the term on dx2 ∧ dx3 reads

β

d∑
k=0

Akdfλ
kxλ−k1 xe2x

f−1
3 = γ

g∑
k=0

Akghλ
kxg−k1 xh−1

2 xi3 (4.54)

Then we conclude that βf = γh, g = d, h− 1 = e, f − 1 = i. The vanishing of dx1 ∧ dx3 and dx1 ∧ dx2

reads γg = βd = 0. So we have d = 0 then

ω =
β

h
(hdx2x

h−1
2 xf3 + fdx3x

h
2x

f−1
3 )

ω =
β

h
d(xh2x

f
3)

which is exact.

Now we consider the 2-forms :
ω = αdx1 ∧ dx2x

a
1x

b
2x
c
3 (4.55)

The vanishing condition in the term on dx1 ∧ dx2 ∧ dx3 reads αc = 0. So the form becomes :

ω = αdx1 ∧ dx2x
a
1x

b
2 (4.56)

ω = αd(dx2
xa+1

1

a+ 1
xb2) (4.57)

which is exact.

Now consider the form

ω = αdx1 ∧ dx2x
a
1x

b
2x
c
3 + βdx2 ∧ dx3x

d
1x

e
2x
f
3 (4.58)

The vanishing condition in the term on dx1 ∧ dx2 ∧ dx3 reads

α
a∑
k=0

Akacλ
kxa−k1 xb2x

c−1
3 = −β

d∑
k=1

Akd(−1)kλk−1xd−k1 xe2x
f
3 (4.59)

Then we conclude that αc = −β, d = 1, a = 0, b = e, c− 1 = f . So

ω = αdx1 ∧ dx2x
b
2x
c
3 − αcdx2 ∧ dx3x1x

b
2x
c−1
3 (4.60)

ω = αd([x1x
b
2x
c
3 − λxb2xc3]dx2) (4.61)

which is exact. The proof that all higher cohomologies are trivial is also an exhaustive analysis of all
the possible cases and inductions on powers of h, as exemplified here for the 3-forms. It is clear that
all 3-forms

ω = αdx1 ∧ dx2 ∧ dx3x
a
1x

b
2x
c
3 (4.62)

are closed. We use induction on n to prove that there exists a three form η such that ω = dη.
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For n = 0, we have

dx1 ∧ dx2 ∧ dx3x
b
2x
c
3 = d(dx1 ∧ dx2

xb2x
c+1
3

c+ 1
) (4.63)

Suppose that there exist 3-forms ηk, for 0 ≤ k < n, such that

dx1 ∧ dx2 ∧ dx3x
a
1x

b
2x
c
3 = dηa (4.64)

then

dx1 ∧ dx2 ∧ dx3x
a
1x

b
2x
c
3 = dx1 ∧ dx2 ∧ dx3[

a+1∑
k=1

Aka+1(−1)kλk−1xa+1−k
1 xb2x

c
3

−
a+1∑
k=2

Aka+1(−1)kλk−1xa+1−k
1 xb2x

c
3]

= d(−dx2 ∧ dx3
xa+1

1

a+ 1
xb2x

c
3 −

a+1∑
k=2

Aka+1(−1)kλk−1ηa+1−k) (4.65)

Hence all 3-forms are exact. The same procedure is used to show the triviality of the other cohomo-
logies.

♠

For R3
λ we should expect the cohomology to be trivial, since this corresponds to Stokes theorem and

many other aspects taken for granted in physics.

5 Hodge ∗-Operator and Electromagnetic Theory

The above geometry also admits a metric structure. It is known that any nondegenerate bilinear
form η ∈ Λ1 ⊗ Λ1 defines an invariant metric on the Hopf algebra H [6]. For the case of R3

λ we can
define the metric

η = dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 (5.66)

for a parameter µ. This bilinear form is non-degenerate, invariant by left and right coactions and
symmetric in the sense that ∧(η) = 0. With this metric structure, it is possible to define a Hodge
∗-operator and then explore the properties of the Laplacian and find some physical consequences. Our
picture is similar to [3] where the manifold is similarly three dimensional.

The Hodge ∗-operator on a n-dimensional calculus (for which the top form is of order n), over a
Hopf algebra H with the metric η is a map ∗ : Ωk → Ωn−k given by the expression

∗(ωi1 ...ωik) =
1

(n− k)!
εi1...ikik+1...inη

ik+1j1 ...ηinjn−kωj1 ...ωjn−k
(5.67)
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In the case of the algebra R3
λ, we have a four dimensional calculus with ω1 = dx1, ω2 = dx2, ω3 = dx3.

The components of the metric inverse, as we can see from (5.66), are η11 = η22 = η33 = 1. The
expressions for the Hodge ∗-operator are summarize as follows :

∗1 = dx1 ∧ dx2 ∧ dx3

∗dx1 = dx2 ∧ dx3

∗dx2 = dx3 ∧ dx1

∗dx3 = dx1 ∧ dx2

∗(dx1 ∧ dx2) = dx3

∗(dx1 ∧ dx3) = −dx2

∗(dx2 ∧ dx3) = dx1

∗(dx1 ∧ dx2 ∧ dx3) = 1 (5.68)

We note that ∗ ∗ (ω) = ω.

Given the Hodge ∗-operator, one can write, for example, the coderivative δ = ∗d∗ and the Laplacian
operator ∆ = δd+dδ. Note that the Laplacian maps to forms of the same degree. We prefer to work
actually with the ’Maxwell-type’ wave operator

� = δd = ∗d ∗ d (5.69)

which is just the same on degree 0 and the same in degree 1 if we work in a gauge where δ = 0. In
the rest of this section, we are going to describe some features of the electromagnetic theory arising
in this noncommutative context. The electromagnetic theory is the analysis of solutions A ∈ Ω1(R3

λ)
of the equation �A = J where J is a 1-form which can be interpreted as a ”physical” source. We
demonstrate the theory on two natural choices of sources namely an electrostatic and a magnetic one.
We start with spin 0 and we limit ourselves to algebraic plus plane wave solutions.

6 Spin 0 modes

The waves operator on Ω0(R3
λ) = R3

λ is comuted from the definitions above as

� = ∗d ∗ d = (∂a)2 (6.70)

where the partials are defined by (4.40). The algebraic massless modes ker� are given by

• Polynomials of degree one : f(x) = α+ βaxa

• Linear combinations of polynomials of the type f(x) = (x2
a − x2

b)

• Linear combinations of quadratic monomials of the type, f(x) = αabxaxb, with a 6= b.

• The three particular combinations f(x) = (2 + δa,110)λx2
a − x2

1x
2
a

12



• The three particular combinations f(x) = (2 + δa,14)λx2
a + x1x

2
a

General eigenfunctions of � in degree 0 are the plane waves ; the expression for their derivatives can
be seen in (4.43). Hence

�eik.x = −|k|2.e−2iλk1eik.x (6.71)

It is easy to see that this eigenvalue goes in the limit λ→ 0 to the usual eigenvalue of the Laplacian
in three dimensional commutative space acting on plane waves.

7 Spin 1 electromagnetic modes

On Ω1(R3
λ), the Maxwell operator �1 = ∗d ∗ d can likewise be computed explicitly. If we writes

A = (dxa)A
a for functions Aµ, then

F = dA = dxa ∧ dxb∂
bAa (7.72)

If we break this up into magnetic parts in the usual way then

Ba = εabc∂
bAc (7.73)

These computations have just the same form as for usual spacetime. The algebraic zero modes ker�1

are given by
– Forms of the type A = βab(dxa)xb, wtih a 6= b and curvature

F = βabdxa ∧ dxb (7.74)

– Forms of the type A = γx1x
2
a with curvature

F = γdxa ∧ dx1x
2
a (7.75)

– Forms of the type A = δx2
1x

2
a with curvature

F = dxa ∧ dx12δx1x
2
a (7.76)

8 Magnetic solution

Here we take a uniform electric current density along a direction vector k ∈ R3, i.e. J = k.dx =∑
a k

adxa. In this case, the gauge potential can be written as

A =
1

4

{
(

3∑
a=1

kadxa)(C + x1x2 + x2x3 + x1x3) +

3∑
a=1

kadxax
2
a

}
(8.77)

The fiels strength is

F = dA =
1

4
dx1 ∧ dx2(2k1x2 + k1x1 + k1x3 − 2k2x1 − k2x2 − k2x3)

+
1

4
dx1 ∧ dx3(2k1x3 + k1x1 + k1x2 − 2k3x1 − k3x3 − k3x2)

+
1

4
dx2 ∧ dx3(2k2x3 + k2x2 + k2x1 − 2k3x2 − k3x3 − k3x1) (8.78)
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If we decompose the curvature in the usual way then this is an magnetic field in a direction k×x (the
vector cross product). This is a ’confining’ (in the sense of increasing with normal distance) version of
the field due to a current in direction k.

We have considered for the electromagnetic solutions only uniform sources J ; we can clearly put in a
functional dependence for the coefficients of the source to similarly obtain other solutions of magnetic
types. Solutions more similar to the usual decaying ones, however, will not be polynomial (one would
need the inverse of

∑
a x

2
a) and are therefore well outside our present scope ; even at a formal level the

problem of computing d(
∑

a x
2
a)
−1 in a closed form appears to be formidable. On the other hand these

matters could probably be adressed by completing to C∗-algebras and using the functional calculus
for such algebras.
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9 Discussion

We choose the representation (4.35) and Λ = e3 because it was convenient when we compute the
1-form dx1,dx2, dx3. None of them was zero which makes only H0 = C.1. It’s a good starting point
for our model.

15
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