THE SHORT PROOFS

LESZEK W. GUŁA
Dedicated to my Parents and my Brother

Abstract

The short proofs of the Fermat's Last Theorem for even $n \geq 4$.

I. INTRODUCTION

It is known that for each primitive Pythagorean triple (x, y, z) there exist two relatively prime natural numbers u, v such that $u-v$ is positive and odd.

Moreover

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \wedge(x+y)^{2}+[\pm(x-y)]^{2}=2 z^{2} \tag{1}
\end{equation*}
$$

where z is odd because for all $a, b \in \mathbb{N}: \frac{1}{2}\left[(2 a+1)^{2}+(2 b+1)^{2}\right]$ is odd.
II. THE FERMAT'S LAST THEOREM FOR EVEN n

Theorem 1 (FLT). For all $n \in\{4,6,8, \ldots\}$ the equation

$$
X^{n}+Y^{n}=Z^{n}
$$

has no primitive solutions in \mathbb{N}_{1}.
Proof of the Main Theorem. Suppose that for some $n \in\{4,6,8, \ldots\}$ the equation

$$
X^{n}+Y^{n}=Z^{n}
$$

has primitive solutions $[X, Y, Z]$ in \mathbb{N}_{1}.
A. The Proof of the Main Theorem for $4 \mid n$.

We assume that for some relatively prime natural numbers u, v such that $u-v$ is positive and odd:

$$
\left[u^{2}-v^{2}=\left(X^{\frac{n}{4}}\right)^{2} \wedge 2 u v=Y^{\frac{n}{2}} \wedge u^{2}+v^{2}=Z^{\frac{n}{2}}\right]
$$

Thus on the strength of (1):

$$
\begin{gathered}
{\left[2 u^{2}=\left(X^{\frac{n}{4}}\right)^{2}+\left(Z^{\frac{n}{4}}\right)^{2} \wedge v-X^{\frac{n}{4}}= \pm X^{\frac{n}{4}} \wedge X^{\frac{n}{4}}+v=Z^{\frac{n}{4}}\right] \Rightarrow} \\
\left(3 X^{\frac{n}{4}}=Z^{\frac{n}{4}} \vee X^{\frac{n}{4}}=Z^{\frac{n}{4}}\right) \Rightarrow \operatorname{gcd}(X, Z)>1
\end{gathered}
$$

which is inconsistent with $\operatorname{gcd}(X, Z)=1$.

[^0]B. The Proof of the Main Theorem for $4 \nmid n$.

We assume that for some $m \in\{3,5,7, \ldots\}$ and for some mutually coprime odd natural numbers a, b, c, d and for some relatively prime natural numbers u, v such that $u-v$ is positive and odd:

$$
\begin{gathered}
{\left[2 m=n \wedge(a b c d)^{2 m}=(u+v)^{2}(u-v)^{2}=\left(X^{m}\right)^{2}=\left(Z^{m}+Y^{m}\right)\left(Z^{m}-Y^{m}\right) \wedge\right.} \\
(a b)^{m}=u+v \wedge(c d)^{m}=u-v \wedge u^{2}+v^{2}=Z^{m} \wedge 2 u v=Y^{m} \wedge \\
\left.b^{2 m}=Z+Y \wedge d^{2 m}=Z-Y \wedge(b d)^{2 m}=Z^{2}-Y^{2} \wedge 4 \mid Y\right]
\end{gathered}
$$

which is inconsistent with $4 \nmid Y$ [2]. This is the proof.

III. ThE PROOFS OF THE FERMAT'S LAST THEOREM FOR $n=4$

Theorem 2. The equation

$$
Z^{4}-Y^{4}=x^{2}
$$

has no primitive solutions in \mathbb{N}_{1}.
Proof. Suppose that the equation

$$
Z^{4}-Y^{4}=x^{2}
$$

has the primitive solutions $[Z, Y, x]$ in \mathbb{N}_{1}.
A. The Proof For Odd x.

We assume that for some mutually coprime natural numbers Z, Y, p, q, where only Y is even:

$$
\left[\left(Z^{2}+Y^{2}=p^{2} \wedge Z^{2}-Y^{2}=q^{2}[1]\right) \wedge 2 Z^{2}=p^{2}+q^{2} \wedge p q=x\right]
$$

Thus on the strength of (1):

$$
(p=Y+q \wedge \pm q=q-Y) \Rightarrow(p=q \vee p=3 q) \Rightarrow \operatorname{gcd}(p, q)>1
$$

which is inconsistent with $\operatorname{gcd}(p, q)=1$.
B. The Proof For Even x.

We assume that for some relatively prime natural numbers u, v such that $u-v$ is positive and odd:

$$
\left(u^{2}+v^{2}=Z^{2} \wedge u^{2}-v^{2}=Y^{2} \wedge 2 u v=x \wedge 2 u^{2}=Z^{2}+Y^{2}\right)
$$

Thus on the strength of (1):

$$
(Z=Y+v \wedge \pm Y=v-Y) \Rightarrow(Z=3 Y \vee Z=Y) \Rightarrow \operatorname{gcd}(Z, Y)>1
$$

which is inconsistent with $\operatorname{gcd}(Z, Y)=1$. This is the proof.
Corollary 1. The equation $Z^{4}-Y^{4}=x^{2}$ has no primitive solutions $[Z, Y, X]$ in \mathbb{N}_{1}, where $X=\sqrt{x}$. This is the corollary.

References

[1] Dolan, S. : "Fermat's method of descente infinie", Mathematical Gazette 95, July 2011, 269-271.
[2] Guła, L.W. : http://www.ijetae.com/files/Volume2Issue12/IJETAE_1212_14.pdf

E-mail address: Iwgula@wp.p|

[^0]: Date: 12 June 2013-21 November 2013.
 1991 Mathematics Subject Classification. Primary: 11D41; Secondary: 11D45.
 Key words and phrases. Diophantus Equation, Fermat Last Theorem, Greatest Common Divisor, Indirect Proof, Pythagoras Theorem.

 This paper is in final form.

