THE TRIANGULAR PROPERTIES OF ASSOCIATED LEGENDRE FUNCTIONS USING THE VECTORIAL ADDITION THEOREM FOR SPHERICAL HARMONICS

R. Mehrem ${ }^{\star}$
Department of Mathematics
Laisterdyke Business and Enterprise College
Thornbury Road
Bradford BD3 8HE
United Kingdom

* Email: ramimehrem@sky.com.

ABSTRACT

Triangular properties of associated Legendre functions are derived using the vectorial addition theorem of spherical harmonics

1. Introduction

A triangular property of the associated Legendre functions was first introduced in reference [1]. The triangular property is a relationship between associated Legendre functions with the arguments being the cosines of angles in a triangle. This property can be used to simplify the calculations of cross sections of electron-atom collisions. This relation was also encountered in the analytical evaluation of infinte integrals over spherical Bessel functions [2]. This paper arrives at the same result of reference [1] and finds other properties using the vectorial addition theorem of spherical harmonics.

2. Deriving the Triangular Properties

Consider a triangle of sides k_{1}, k_{2} and k_{3} such that $\vec{k}_{3}=\vec{k}_{1}+\vec{k}_{2}$. Application of the vectorial addition theorem for spherical harmonics [3] results in

$$
\begin{align*}
& Y_{\lambda_{3}}^{M_{3}}\left(\hat{k}_{3}\right)=(-1)^{\lambda_{3}-M_{3}}\left(2 \lambda_{3}+1\right)\left(\frac{k_{1}}{k_{3}}\right)^{\lambda_{3}} \sum_{\lambda=0}^{\lambda_{3}} \sqrt{\frac{4 \pi}{(2 \lambda+1)\left[2\left(\lambda_{3}-\lambda\right)+1\right]}}\binom{2 \lambda_{3}}{2 \lambda}^{1 / 2} \\
& \times\left(\frac{k_{2}}{k_{1}}\right)^{\lambda} \sum_{M}\left(\begin{array}{ccc}
\lambda_{3}-\lambda & \lambda & \lambda_{3} \\
M_{3}-M & M & -M_{3}
\end{array}\right) Y_{\lambda_{3}-\lambda}^{M_{3}-M}\left(\hat{k}_{1}\right) Y_{\lambda}^{M}\left(\hat{k}_{2}\right) \tag{2.1}
\end{align*}
$$

where $-\lambda_{3} \leq M_{3} \leq \lambda_{3}$ and $-\lambda \leq M \leq \lambda$. Now let the triangle be in a plane belonging to a specific azimuthal angle ϕ, in the spherical polar system of coordinates. Hence, using

$$
\begin{equation*}
Y_{L}^{M}(\hat{k})=\sqrt{\frac{2 L+1}{4 \pi}} \sqrt{\frac{(L-M)!}{(L+M)!}} e^{i m \phi} P_{L}^{M}\left(\cos \theta_{\hat{k}}\right) \tag{2.2}
\end{equation*}
$$

one arrives at

$$
\begin{align*}
& P_{\lambda_{3}}^{M_{3}}\left(\cos \theta_{\hat{k}_{3}}\right)=(-1)^{\lambda_{3}-M_{3}} \sqrt{\frac{\left(\lambda_{3}+M_{3}\right)!}{\left(\lambda_{3}-M_{3}\right)!}} \sqrt{2 \lambda_{3}+1}\left(\frac{k_{1}}{k_{3}}\right)^{\lambda_{3}} \sum_{\lambda=0}^{\lambda_{3}}\binom{2 \lambda_{3}}{2 \lambda}^{1 / 2}\left(\frac{k_{2}}{k_{1}}\right)^{\lambda} \\
& \times \sum_{M} \sqrt{\frac{(\lambda-M)!\left[\lambda_{3}-\lambda-\left(M_{3}-M\right)\right]!}{(\lambda+M)!\left[\lambda_{3}-\lambda+M_{3}-M\right]!}}\left(\begin{array}{ccc}
\lambda_{3}-\lambda & \lambda & \lambda_{3} \\
M_{3}-M & M & -M_{3}
\end{array}\right) \\
& \times P_{\lambda_{3}-\lambda}^{M_{3}-M}\left(\cos \theta_{\hat{k}_{1}}\right) P_{\lambda}^{M}\left(\cos \theta_{\hat{k}_{2}}\right) . \tag{2.3}
\end{align*}
$$

It is easy to show that

$$
\begin{align*}
& \sqrt{\frac{\left(j_{1}+j_{2}+m_{1}+m_{2}\right)!\left(j_{2}-m_{2}\right)!}{\left(j_{1}+j_{2}-m_{1}-m_{2}\right)!\left(j_{2}+m_{2}\right)!}}\binom{2\left(j_{1}+j_{2}\right)}{2 j_{2}}^{1 / 2}\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{1}+j_{2} \\
m_{1} & m_{2} & -m_{1}-m_{2}
\end{array}\right) \tag{2.4}\\
& =\frac{(-1)^{j_{2}-j_{1}-m_{1}-m_{2}}}{\sqrt{2\left(j_{1}+j_{2}\right)+1}} \sqrt{\frac{\left(j_{1}+m_{1}\right)!}{\left(j_{1}-m_{1}\right)!}}\binom{j_{1}+j_{2}+m_{1}+m_{2}}{j_{2}+m_{2}},
\end{align*}
$$

Hence, equation (2.3) reduces to

$$
\begin{equation*}
P_{\lambda_{3}}^{M_{3}}\left(\cos \theta_{\hat{k}_{3}}\right)=\left(\frac{k_{1}}{k_{3}}\right)^{\lambda_{3}} \sum_{\lambda=0}^{\lambda_{3}}\left(\frac{k_{2}}{k_{1}}\right)^{\lambda} \sum_{M}\binom{\lambda_{3}+M_{3}}{\lambda+M} P_{\lambda_{3}-\lambda}^{M_{3}-M}\left(\cos \theta_{\hat{k}_{1}}\right) P_{\lambda}^{M}\left(\cos \theta_{\hat{k}_{2}}\right) . \tag{2.5}
\end{equation*}
$$

Let \vec{k}_{1} point in the z-direction, where $\cos \theta_{\hat{k}_{1}}=1, \cos \theta_{\hat{k}_{2}}=-\cos \gamma$ and $\cos \theta_{\hat{k}_{3}}=$ $\cos \beta$. As in Fig. 1, α, β and γ define the interior angles of the defined triangle. One can then rewrite equation (2.5) using the interior angles of the triangle as

$$
\begin{equation*}
P_{\lambda_{3}}^{M_{3}}(\cos \beta)=(-1)^{M_{3}}\left(\frac{k_{1}}{k_{3}}\right)^{\lambda_{3}} \sum_{\lambda=0}^{\lambda_{3}}\left(\frac{-k_{2}}{k_{1}}\right)^{\lambda}\binom{\lambda_{3}+M_{3}}{\lambda_{3}-\lambda} P_{\lambda}^{M_{3}}(\cos \gamma) . \tag{2.6}
\end{equation*}
$$

using

$$
\begin{gather*}
P_{L}^{\mathcal{M}}(-\cos \theta)=(-1)^{L+\mathcal{M}} P_{L}^{\mathcal{M}}(\cos \theta) \tag{2.7}\\
P_{L}^{\mathcal{M}}(1)=\delta_{\mathcal{M}, 0} \tag{2.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\binom{\lambda_{3}+M_{3}}{\lambda+M_{3}}=\binom{\lambda_{3}+M_{3}}{\lambda_{3}-\lambda} . \tag{2.9}
\end{equation*}
$$

An alternative form, which is the result of reference [2], can be obtained if the sum is made over $\mathcal{L}=\lambda_{3}-\lambda$ as follows

$$
\begin{equation*}
P_{\lambda_{3}}^{M_{3}}(\cos \beta)=(-1)^{M_{3}}\left(\frac{k_{1}}{k_{3}}\right)^{\lambda_{3}} \sum_{\mathcal{L}=0}^{\lambda_{3}-M_{3}}\left(\frac{-k_{2}}{k_{1}}\right)^{\lambda_{3}-\mathcal{L}}\binom{\lambda_{3}+M_{3}}{\mathcal{L}} P_{\lambda_{3}-\mathcal{L}}^{M_{3}}(\cos \gamma) \tag{2.10}
\end{equation*}
$$

where the sum is now restricted to $\lambda_{3}-M_{3}$ since $P_{\lambda_{3}-\mathcal{L}}^{M_{3}}(\cos \gamma)$ vanishes for $M_{3}>\lambda_{3}-\mathcal{L}$.
Now let \vec{k}_{2} point along the z-axis, where $\cos \theta_{\hat{k}_{2}}=1$, $\cos \theta_{\hat{k}_{1}}=-\cos \gamma$ and $\cos \theta_{\hat{k}_{3}}=\cos \alpha$. Equation (2.5) reduces to

$$
\begin{equation*}
P_{\lambda_{3}}^{M_{3}}(\cos \alpha)=(-1)^{M_{3}}\left(\frac{-k_{1}}{k_{3}}\right)^{\lambda_{3}} \sum_{\lambda=0}^{\lambda_{3}}\left(\frac{-k_{2}}{k_{1}}\right)^{\lambda}\binom{\lambda_{3}+M_{3}}{\lambda} P_{\lambda_{3}-\lambda}^{M_{3}}(\cos \gamma) . \tag{2.11}
\end{equation*}
$$

Also, if \vec{k}_{3} points in the z-direction, where $\cos \theta_{\hat{k}_{3}}=1, \cos \theta_{\hat{k}_{1}}=\cos \beta$ and $\cos \theta_{\hat{k}_{2}}=$ $\cos \alpha$, equation (2.5) becomes

$$
\begin{equation*}
\sum_{\lambda=0}^{\lambda_{3}}\left(\frac{k_{2}}{k_{1}}\right)^{\lambda} \sum_{M}\binom{\lambda_{3}}{\lambda+M} P_{\lambda_{3}-\lambda}^{-M}(\cos \beta) P_{\lambda}^{M}(\cos \alpha)=\left(\frac{k_{3}}{k_{1}}\right)^{\lambda_{3}} \tag{2.12}
\end{equation*}
$$

3. Conclusions

The vectorial addition theorem can be used to obtain triangular relationships between associated Legendre functions, $P_{L}^{\mathcal{M}}(x)$, for $-L \leq \mathcal{M} \leq L$. These relations, amongst other applications, allow the simplification of expressions obtained in the analytical evaluation of infinite integrals over spherical Bessel functions.

4. References

[1] S. Fineschi, E. Landi and Degl'Innocenti, J. Math. Phys. 31, 1124 (1990).
[2] R. Mehrem and A. Hohenegger, J. Phys. A 43, 455204 (2010), arXiv: math-ph/1006.2108, 2010.
[3] D.M. Brink and G.R. Satchler, Angular Momentum
(Oxford University Press, London 1962).
z-axis

Figure 1: Triangle of sides k_{1}, k_{2} and k_{3}, where \vec{k}_{1} points along the z -axis

