The notion of chameleonic numbers, a set of composites that "hide" in their inner structure an easy way to obtain primes

Marius Coman
Bucuresti, Romania
email: mariuscoman13@gmail.com

Abstract

In this paper I present the notion of "chameleonic numbers", a set of composite squarefree numbers not divisible by 2, 3 or 5 , having two, three or more prime factors, which have the property that can easily generate primes with a certain formula, other primes than they own prime factors but in an amount proportional with the amount of these ones.

Definition:

We define in the following way a "chameleonic number": the non-null positive composite squarefree integer C not divisible by 2, 3 or 5 is such a number if the absolute value of the number P - $d+1$ is always a prime or a power of a prime, where d is one of the prime factors of C and P is the product of all prime factors of C but d.

Example:

The Hardy-Ramanujan number, $1729=7 * 13 * 19$, is a "chameleonic number" because:

```
: 7*13 - 19 + 1 = 73, a prime;
: 7*19 - 13 + 1 = 121 = 11^2, a square of a prime;
: 13*19 - 7 + 1 = 241, a prime.
```


Comment:

Indeed, we obtained using the decomposition in prime factors of the number 1729 with the three prime factors [7, 13, 19] the triplet of primes [11, 73, 241], but this is the defining property of the "chameleonic numbers"; the property that I was talking about in title and in abstract refers to another triplet of primes, obtained with a certain formula. The numbers $N=30 *(d-1)+C$ where C is a "chameleonic number" and d one of its prime factors, are often primes, Fermat pseudoprimes or "chameleonic numbers" themselves.

Example:

The Hardy-Ramanujan number, $1729=7 * 13 * 19$, which is also a "chameleonic number", as it can be seen above, generates with the mentioned formula the following three numbers:
$: \quad N_{1}=30 *(7-1)+1729=23 * 83$, a "chameleonic number" because 83 - $23+1=61$, a prime;
: $\quad \mathrm{N}_{2}=30 *(13-1)+1729$ = 2089, a prime;
: $\quad N_{3}=30 *(19-1)+1729$ = 2269, a prime.

Chameleonic semiprimes:

The set of chameleonic numbers with two prime factors is: 77, 91, 119, 133, 143, 161, 187, 203 (...).

Indeed:

```
: for 77 = 7*11 we have 11 - 7 + 1 = 5, prime;
: for 91=7*13 we have 13 - 7 + 1 = 7, prime;
: for 119 = 7*17 we have 17 - 7 + 1 = 11, prime;
: for 133 = 7*19 we have 19 - 7 + 1 = 13, prime;
: for 143 = 11*13 we have 13 - 11 + 1 = 3, prime;
: for 161 = 7*23 we have 23 - 7 + 1 = 17, prime;
: for 187 = 11*17 we have 17 - 11 + 1 = 7, prime;
: for 203=7*29 we have 29 - 7 + 1 = 23, prime.
(....)
```

Duplets of numbers obtained from the chameleonic semiprimes with the formula mentioned above:

```
: 30*(7 - 1) + 77 = 257, prime;
: 30*(11 - 1) + 77 = 377 = 13*29, a "chameleonic number" because
    29-13 + 1 = 17, a prime;
: 30*(7 - 1) + 91 = 271, prime;
: 30*(13 - 1) + 91 = 451 = 11*41, a "chameleonic number" because
    41-11 + 1 = 31, a prime;
: 30*(7 - 1) + 119 = 299 = 13*23, a "chameleonic number" because
    23 - 13 + 1 = 11, a prime;
: 30*(17 - 1) + 119 = 599, prime;
: 30*(7 - 1) + 133 = 313, prime;
: 30*(19 - 1) + 133 = 673, prime;
: 30*(11 - 1) + 143 = 443, prime;
: 30*(13 - 1) + 143 = 503, prime;
: 30*(7 - 1) + 161 = 341 = 11*31, a Fermat pseudoprime to base
    two;
: 30*(23 - 1) + 161 = 821, prime;
: 30*(11 - 1) + 187 = 487, prime;
: 30*(17 - 1) + 187 = 667 = 23*29, a "chameleonic number" because
    29-23 + 1 = 7, a prime;
: 30*(7 - 1) + 203 = 383, prime;
: 30*(29 - 1) + 203 = 1043 = 7*149, an "extended chameleonic
    number" because 149 - 7 + 1 = 143, a "chameleonic number" (but
    we extend only intuitively the definition in this paper).
```


Note:

Many Fermat pseudoprimes to base two with two prime factors are also chameleonic numbers (see the articles about 2-Poulet numbers posted by us on Vixra).

Chameleonic numbers with three prime factors:

The set of chameleonic numbers with three prime factors is: 1309, 1729, 2233, 2849, 3289 (...).

Indeed:
: for $1309=7 * 11 * 17$ we have:
: $\quad 7 * 11-17+1=61$, prime;
: $7 \star 17-11+1=109$, prime;
: $11 * 17-7+1=181$, prime;
: for $2233=7 * 11 * 29$ we have:
: $\quad 7 * 11-29+1=49=7 \wedge 2$, a square of a prime;
: $7 * 29-11+1=193$, prime;
: $11 * 29-7+1=313$, prime;
: for $2849=7 * 11 * 37$ we have:
: $7 * 11-37+1=41$, prime;
: $\quad 7 * 37-11+1=289=17^{\wedge} 2$, a square of a prime;
: $11 * 37-7+1=401$, prime;
: for $3289=11 * 13 * 23$ we have:
: $\quad 11 * 13-23+1=121=11^{\wedge} 2$, a square of a prime;
: $11 * 23-13+1=361=19^{\wedge} 2$, a square of a prime;
: $13 * 23-11+1=289=17 \wedge 2$, a square of a prime.
Triplets of numbers obtained from the chameleonic semiprimes with the formula mentioned above:

```
: 30*(7 - 1) + 1309 = 1489, prime;
: 30*(11 - 1) + 1309 = 1609, prime;
: 30*(17 - 1) + 1309 = 1789, prime;
```

: $30 *(7-1)+2233=2413=19 * 127$, a "chameleonic number" because $127-19+1=109$, a prime;
: $30 *(11-1)+2233=2533=17 * 149$, an "extended chameleonic number" because $149-17+1=133$, a a "chameleonic number";
: 30*(29-1) $-2233=3073=7 * 439$, a "chameleonic number" because $439-7+1=433$, a prime;
(...)

Open problems:

I. Are there other interesting properties of the chameleonic numbers?
II. There exist chameleonic numbers with 4, 5, 6 or more prime factors?

