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ABSTRACT.  
 
This paper presents an elementary proof of the strong Goldbach conjecture. We 
show that the conjecture is the consequence of an appropriate structuring of the 
natural numbers. First, we choose an equivalent but more convenient form of 
the conjecture. Then, in view of this form, we create a structure for the natural 
numbers. Finally, we derive a distribution property, induced by that structure, 
and we realize that this has crucial impact on the conjecture. As an additional 
result of that property we are even able to prove a strengthened form of the 
conjecture. 
 
 
 
 
CLAIM. 
 
Strong Goldbach conjecture (SGB): Every even integer greater than 2 can be 
expressed as the sum of two primes. 
 
Moreover (SSGB): Every even integer greater than 6 can be expressed as the 
sum of two different primes. 
 
 
 
 
PROOF. 
 
We replace SGB and SSGB by the following equivalent representations: 
 
Every integer greater than 1 is prime or is the arithmetic mean of two different 
primes p1 and p2. 
 
and 
 
Every integer greater than 3 is the arithmetic mean of two different primes p1 
and p2. 
 
____________________ 
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SGB    n  , n > 1 : ( n prime   p1, p2 prime and  d  , d > 0,      (1) 
                with:  p1 + d = n = p2 – d ) 
 

SSGB  n  , n > 3 : (  p1, p2 prime and  d  , d > 0,                      (2) 
                with:  p1 + d = n = p2 – d ) 
 
 
The following proof consists of a trivial Part A and a non-trivial Part B. Part A 
describes a structuring of the natural numbers; Part B derives a distribution 
property, based on the results of Part A, and proves the conjecture. 
 
 
Part A 
 
We create all triples (t1, t2, t3)   x  x  of the form 
 
(t1, t2, t3) = (p∙k, m∙k, q∙k), where: 
 
k  , k ≥ 1; 3 ≤ p, q primes, p < q, and m   defined by m = (p + q) ∕ 2. 
 
 
Lemma.  With the above notations, we have: Every n  , n ≥ 3, can be 
represented by at least one ti : n  , n ≥ 3,  ti, 1 ≤ i ≤ 3, such that n = ti. 
 
 
Proof.  If n is a prime number, we have with k = 1: n = t1 or n = t3. 
 
If n is a composite number, the following applies: 
 
For all n different from powers of 2, n = t1 or n = t3 is always a possible 
representation using a prime decomposition n = p∙k or n = q∙k with prime factors 
3 ≤ p < q. In this case, all infinitely many odd primes are needed. 
 
For all powers of 2 we choose the representation n = t2 with p = 3, m = 4, q = 5 
and k = 1, 2, 4, 8, 16, … . 

                                                                                  □ 

 
 
Let 3 denote the natural numbers starting from 3. Based on the above result, 
in case of n = p∙k we choose an arbitrary prime q with q > p and in case of n = 
q∙k we choose an arbitrary prime p with 3 ≤ p < q. By obtaining the triples 
 
(n = p∙k, m∙k, q∙k), (p∙k, m∙k, n = q∙k), (3∙k, n = 4∙k, 5∙k), 
 
we say that 3 is structured by means of all (t1, t2, t3) = (p∙k, m∙k, q∙k). Since 
each element of 3 appears as the component of at least one triple, we say 
that 3 is entirely covered by the structure (p∙k, m∙k, q∙k). We denote this 
characteristic by (I). 
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This structure is unique in the following sense: 
 
We call triples equidistant when the successive components are equidistant. 
We then consider equidistant triples of the form (t1, t2, t3) = (x1∙k, x2∙k, x3∙k) with 
integers k ≥ 1 and xi ≥ 3, where for each i, 1 ≤ i ≤ 3, either all xi are primes or all 
xi are composites. Then, due to the initial triple (3, 4, 5), the only equidistant 
triples (x1∙k, x2∙k, x3∙k), which cover 3 completely, are those where x1 and x3 
are odd primes and x2 are composites. As is easily verified, all other 
combinations (x1, x2, x3) of primes and composites are not possible. For 
example, in case of x1 and x2 primes and in case of x2 and x3 primes, the 
number 4 would be missing; in case of x1 and x3 composites, the number 3 
would be missing. 
 
So, the uniqueness of our structure which is represented by all triples (p∙k, m∙k, 
q∙k) means the following: If we allow the coefficients xi in (x1∙k, x2∙k, x3∙k) to be 
either primes or composites, the only equidistant triple form that covers 3 is 
(p∙k, m∙k, q∙k) with primes p, q and composites m. We denote this characteristic 
by (II). 
 
Actually, for an entire covering of 3 it would be sufficient if we chose (3∙k, 4∙k, 
5∙k) together with triples (p∙k, m∙k, q∙k) in which all other odd primes occur in 
any way. But for our purpose we use the structure that contains all pairs (p, q) 
of odd primes with p < q. We call this the maximality of the structure and denote 
this characteristic by (III). 
 
 
The following example (n = 42 = 2∙3∙7) illustrates the redundancies in that 
structure (incomplete): 
 
(42, 54, 66) = (7∙6, 9∙6, 11∙6) 
 
(18, 30, 42) = (3∙6, 5∙6, 7∙6) 
 
(42, 70, 98) = (3∙14, 5∙14, 7∙14) 
 
(33, 42, 51) = (11∙3, 14∙3, 17∙3) 
 
(41, 42, 43) = (41∙1, 42∙1, 43∙1) 
 
(37, 42, 47) = (37∙1, 42∙1, 47∙1) 
 
 
Note: SGB is equivalent to saying that for composite numbers n there is always 
the redundant representation n = t2 with k = 1. 
 
 
 
Part B 
 
After the role of k as a multiplier generating composite numbers, in this part we 
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will identify an additional meaning of the numbers k. This dual role of k in the 
triple representation is a key point in the proof. 
 
 
For each k  , k ≥ 1, we define 
 
M(k) := { n   | n = p∙k  n = m∙k  n = q∙k; 3 ≤ p < q primes, m = (p + q) ∕ 2 }. 
 

So, in Part A we have shown that  3 =    M(k).  
                                                                k ≥ 1  

 
Note: For different numbers k1 and k2, the intersection M(k1) ∩ M(k2) is equal 
to the redundancies between the triples (p∙k1, m∙k1, q∙k1) and (p∙k2, m∙k2, q∙k2). 
 
 
For the moment, we cannot say that for a fixed k ≥ 1 all multiples x∙k, x ≥ 3, are 
contained in a single M(k). However, due to the maximality of our structure, we 
can say that the components in the triples (p∙k, m∙k, q∙k) are potential 
candidates for this, in contrast for example to the structure in which are used 
only pairs of consecutive primes p' and q'. In this case, the triples (p'∙k, m'∙k, 
q'∙k) also cover 3 completely, but infinitely many multiples of k are obviously 
not contained in the corresponding M'(k). 
 
We will see now that this quality, i.e. the existence of all multiples x∙k, x ≥ 3, in a 
single M(k), arises as an effect from the interaction of all M(k), k ≥ 1, the so-
called principle of ‘emergence’. 
 
We achieve this by showing that the complete covering of 3 with the maximal 
structure, using all pairs (p, q) of odd primes with p < q in the triples (p∙k, m∙k, 
q∙k), results in a forced distribution property for each number k and its 
corresponding prime factorization. 
 
 
Specifically, the results from Part A 
 

(I)   3  =   M(k) is covered by the triples (p∙k, m∙k, q∙k) 
                k ≥ 1 
and 
 
(II)  (p∙k, m∙k, q∙k) is the unique equidistant triple form (x1∙k, x2∙k, x3∙k) that 
      covers 3 
 
and 
 
(III) All pairs (p, q) of odd primes with p < q are used in the triples (p∙k, m∙k, q∙k) 
      for each k ≥ 1 
 
imply the following distribution pattern for the prime factors of any fixed k within 
the structured 3 : 
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In its unique prime factorization k is always being extended by any two 
additional odd prime factors p, q and by an extension m as their arithmetic 
mean, being either a prime extension too or a composite extension. Exclusively 
these two types of equidistant triples (p∙k, m∙k, q∙k) determine the distribution of 
all x∙k, x ≥ 3, among themselves. 
 
 
Why the implication above is true: 
 
We abandon the idea of having to find for a given number n two primes whose 
arithmetic mean is equal to n respectively whose sum is equal to 2∙n. Instead, 
we identify the natural numbers starting from 3 – apart from the powers of 2 – 
redundantly in pairs of the form (p∙k, q∙k), where all combinations of odd primes 
p, q with p < q and integers k > 0 are used. 
 
For each fixed k > 0, the set of all such pairs (p∙k, q∙k) defines a two-membered 
pattern for k within 3. This pattern, that covers 3  { powers of 2 } when 
using all k, says that k in its unique prime factorization is always being extended 
by any two additional odd prime factors. The parameters which exclusively 
determine this two-membered pattern are the pairs (p, q) of odd primes with p < 
q. Hence, by applying to each such pair a fixed formula f whose result f(p, q) is 
an element in 3 we get a three-membered pattern for each k within 3 by 
means of (p∙k, q∙k, f(p, q)∙k). 
 
If f moreover satisfies the condition that all (p, q, f(p, q)) have the same 
numerical ordering and that the two distances of successive components have 
a constant difference, for each fixed k the triples (p∙k, q∙k, f(p, q)∙k) distribute 
their components in a uniform way. In that case, the two-membered pattern for 
each k is being expanded into a three-membered distribution pattern for each k 
within 3 by means of (p∙k, q∙k, f(p, q)∙k). 
 
In our case, the formula with that condition is the arithmetic mean, so that the 
pairs (p∙k, q∙k) are expanded into triples (p∙k, m∙k, q∙k) including also the powers 
of 2 by (3∙k, 4∙k, 5∙k). Thereby, the two-membered pattern for each k is 

expanded into a three-membered distribution pattern that covers the whole 3 

by using all k. This three-membered distribution pattern is the underlined above. 
 
 

According to (1), we now choose an integer n > 1 which is not prime. We then 

consider the multiple n∙k for any k > 1, i.e. n is a composite extension of k. In 
order to fulfill the underlined distribution pattern of k in 3, n∙k must be the 
middle component of a triple (p∙k, m∙k, q∙k). This proves SGB. 
 

According to (2), we now choose a prime n > 3. Obviously, n lies between two 

other odd primes. We then consider the multiple n∙k for any k > 1, i.e. n is a 
prime extension of k. In order to fulfill the underlined distribution pattern of k in  

3, n∙k must be the middle component of a triple (p∙k, m∙k, q∙k). This, together 
with SGB, proves SSGB. 

                                                                                                                            □ 
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Note: If we additionally allow the values p = 1 and q = 3, we have that all 
multiples of any natural number k occur exclusively in the symmetric form (p∙k, 
m∙k, q∙k). 
 
 
 
 
EXAMPLES. 
 
n = 14 and k = 3: 
 
Let us assume that n is not the arithmetic mean of two primes. For n∙k = 42, we 
find for example (p∙k', m∙k', q∙k') = (3∙6, 5∙6, 7∙6), which is part of the distribution 
of 6 in the structure. But there is no triple (p∙3, m∙3, q∙3) that contains n∙3. 
Thus, n∙3 violates the distribution of 3 in the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be arithmetic 
mean of, for example, 11 and 17. 
 
 
n = 9 and k = 3: 
 
Let us assume that n is not the arithmetic mean of two primes. For n∙k = 27, we 
only find (p∙k', m∙k', q∙k') = (3∙9, m∙9, q∙9), which is part of the distribution of 9 in 
the structure. But there is no triple (p∙3, m∙3, q∙3) that contains n∙3. Thus, n∙3 
violates the distribution of 3 in the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be arithmetic 
mean of, for example, 7 and 11. 
 
 
n = 19 and k = 3: 
 
Let us assume that n is not the arithmetic mean of two primes. For n∙k = 57, we 
find for example (p'∙k, m'∙k, q'∙k) = (17∙3, 18∙3, 19∙3), which is part of the 
distribution of 3 in the structure. But there is no triple (p∙3, m∙3, q∙3) with p < 19 
< q that contains n∙3. Thus, n∙3 violates the distribution of 3 in the structure. 
 
This contradiction can be resolved only if n = m, that is, n must be arithmetic 
mean of 7 and 31. 
 
 
 
 
REMARKS. 
 
a. The statement in the binary Goldbach conjecture is actually nothing more 
    than the symmetric structure (p∙k, m∙k, q∙k) used in the proof. As we have 
    shown, in fact it is a specific case of a general distribution principle within the 
    natural numbers. 



7 
 

     
    In order to get rid of the usual interpretation of the conjecture that focuses 
    on the sums of primes and thus opposes their multiplicative character, we 
    have tackled the problem differently after reformulating to the triple form: 
    Instead of searching for primes which build the needed arithmetic mean 
    equal to a given n, we have made an access from the reverse direction. 
    Based on the multiplicative prime decomposition, we realize n∙k as the result 
    of a fixed formula (i.e. the arithmetic mean) applied to the pattern (p∙k, q∙k). 
     
    A key point in the proof is the dual role of the numbers k: on the one hand 
    as multiplier they generate composite numbers, on the other hand their own 
    occurrence within  is strictly set by the used triple. 
 
    While in a single M(k) the existence of all multiples x∙k, x ≥ 3, for k is not    
    guaranteed, the union of all M(k), k ≥ 1, determines these multiples for any   
    fixed k by means of (p∙k, m∙k, q∙k), because that union is equal to the whole   
    3. In other subjects, this effect of the formation of new properties after the 
    transition of single items to a whole system is called emergence. (“The whole    
    is more than the sum of its parts.”) 
 
 
b. Due to the unpredictable nature of the distribution of the primes – especially  
    their incidence within certain intervals – all studies on the representation of  
    natural numbers as the sum of primes are problematic when they use  
    approaches based on that distribution.     
 
    Despite tremendous efforts over the centuries, the best result so far was five 
    summands. I was always convinced that the solution must lie in the  
    constructive characteristics of the prime numbers and not in their distribution 
    (see more on this in the next section). 
 
 
c. Using an appropriate model for the environment in which the problem is    
    given, also other arithmetic questions in number theory can possibly be   
    solved in an elementary way (unless there is no solution on the basis of the  
    underlying axiom system). 
 
 
 
 
GOLDBACH AND THE UNEXPECTED SIMPLICITY. 
 
In the course of the attempts to solve the strong and the weak Goldbach 
conjecture – both formulated by Goldbach and Euler in their correspondence in 
1742 – was taken in fact a gigantic wrong route by focusing exclusively on the 
additive character of the statements. 
 
After a proof has not even been achieved for three prime summands (the weak 
conjecture for odd numbers) without additional assumptions, in the twenties of 
the last century mathematicians began to search for a maximum number of 
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primes which is necessary to represent any natural number greater than 1 as 
their sum. At the beginning, there were proofs that required hundreds of 
thousands (!) of primes (L. Schnirelmann). The weak conjecture could then be 
proved in 1937 (I. Vinogradov), however only above a very large constant so 
that enough primes are available as summands. 
 
Then it took almost another century until being able to reduce the sum 
representation for all integers > 1 to five respectively six summands of primes 
(T. Tao). Ironically, in May 2013, was then claimed the closing of the huge gap 
of numbers for the weak Goldbach version, using numerical verification 
combined with an extremely complex estimative proof (H. Helfgott). 
 
The so-called Hardy-Littlewood circle method, which was employed and 
constantly improved in those approaches, has ignored the actual role of the 
primes in the context of the originally formulated problem of Goldbach and 
Euler, by examining permanently "how many" prime numbers are available as 
summands. As this method does not work for the binary Goldbach conjecture, 
the concern for this original problem has been pushed into the background up to 
the present time. And this in spite of the fact, that a solution would have 
concluded the issue of sum representations by primes in a fundamental way. 
 
 
In the eighteenth century it was quite normal that a brilliant mathematician 
answered also less brilliant ones and so Euler wrote in his response to 
Goldbach on 30 June 1742, he was convinced of the correctness of the 
conjecture. (“Dass … ein jeder numerus par eine summa duorum primorum sey, 
halte ich für ein ganz gewisses theorema, ungeachtet ich dasselbe nicht 
demonstriren kann.”) 
 
It is possible that his thoughts were not far away from the structural 
interpretation of the conjecture as shown in the present paper – certainly they 
were very far away from the methods initiated two hundred years later. 
 
 
 
 
 
 


