Xu Feng

The elliptic curve be: $y^{2}=x^{3}+a x+b$.
Now pointing $\mathrm{P}(0,1)$ and $\mathrm{Q}(1,2)$ on the curve,
which are become two equations set:

$$
\left\{\begin{array}{l}
1^{2}=0^{3}+a \times 0+b \\
2^{2}=1^{3}+a \times 1+b
\end{array}\right.
$$

By the next step, $a=2$ and $b=1$.
and the elliptic curve is become:

$$
y^{2}=x^{3}+2 \mathrm{x}+1
$$

but now, let $x=\cos \theta$ and $y=\sin \theta$.
By the next step, the elliptic curve is:

$$
\sin ^{2} \theta=\cos ^{3} \theta+2 \cos \theta+1
$$

because $\sin ^{2} \theta+\cos ^{2} \theta=1$,
the elliptic curve become:

$$
1-\cos ^{2} \theta=\cos ^{3} \theta+2 \cos \theta+1
$$

By the next step, the elliptic curve is:

$$
\cos ^{2} \theta+\cos \theta+2=0
$$

By the next step, the elliptic curve is :

$$
\left(\cos \theta+\frac{1}{2}\right)^{2}-\frac{1}{4}+2=0
$$

By the next step, $\quad \cos \theta=\frac{1}{2}(\pm \sqrt{7} i-1)$.
But now, let $\pm \sqrt{7} i-1=1$,
By the next step, $\quad \cos \theta=\frac{1}{2}$, and $\quad \theta=2 \mathrm{k} \pi+\frac{\pi}{3}, \quad(k=0,1,2,3,4, \ldots, \infty)$,

So, $\quad x=\cos \left(2 \mathrm{k} \pi+\frac{\pi}{3}\right)=\frac{1}{2} \quad$ and $\quad y=\sin \left(2 \mathrm{k} \pi+\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \quad, \quad(k=0,1,2,3,4, \ldots, \infty)$.

