The other mathematical formulas of the prime numbers

Xu Feng

1)
$$\frac{4 \times 10^n + 1}{7}$$
, when $n = 5 + 6k$, $k = 0, 1, 2, 3, 4, \dots, \infty$, its results are the prime numbers.

but when $k=3,4,5,\ldots\infty$, it has the repeating numbers 571428.

2) $\frac{4 \times 10^n + 3}{7}$, when n = 6k, $k = 1, 2, 3, 4, ..., \infty$, its results are the prime numbers,

but when $k=3,4,5,6,\ldots,\infty$, it has the repeating numbers 571428 too.

3)
$$\frac{4 \times 10^n + 7}{11}$$
, when $n = 2k$, $k = 0, 1, 2, 3, 4, \dots, \infty$, its results are the prime numbers,

but when $k=3,4,5,6,\ldots,\infty$, it has the repeating numbers 36.