On the Riemann hypothesis

Xu Feng

The Riemann zeta function be: $\zeta(\mathrm{s})=\frac{1}{n^{s}}$,
in which it has a geometric series:

$$
\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{8^{s}}+\frac{1}{16^{s}}+\frac{1}{32^{s}}+\ldots
$$

and its geometric sequence is :

$$
\frac{1}{1^{s}} \times\left(\frac{1}{2^{s}}\right)^{n-1} \quad, \quad \text { and the common ratio is } \frac{1}{2^{s}}
$$

Because $\frac{1}{1^{s}}=\left(\frac{1}{1}\right)^{s}=1$, so, its geometric sequence is $\left(\frac{1}{2^{s}}\right)^{n-1}$ too.
but now, the Riemann zeta function includes the geometric series, so that the common ratio $\frac{1}{2^{s}}$ belongs to the Riemann zeta function.

In the same, because $\frac{1}{2^{s}}=\left(\frac{1}{2}\right)^{s}$, in which its real part is $\frac{1}{2}$, so that the real part of the every nontrivial zeros of the Riemann zeta function is $\frac{1}{2}$.

