On the Riemann hypothesis

Xu Feng

The Riemann zeta function be: $\zeta(s) = \frac{1}{n^s}$,

in which it has a geometric series:

$$\frac{1}{1^{s}} + \frac{1}{2^{s}} + \frac{1}{4^{s}} + \frac{1}{8^{s}} + \frac{1}{16^{s}} + \frac{1}{32^{s}} + \dots$$

and its geometric sequence is :

$$\frac{1}{1^s} \times (\frac{1}{2^s})^{n-1}$$
, and the common ratio is $\frac{1}{2^s}$

Because $\frac{1}{1^s} = (\frac{1}{1})^s = 1$, so, its geometric sequence is $(\frac{1}{2^s})^{n-1}$ too.

but now, the Riemann zeta function includes the geometric series , so that the common ratio $\frac{1}{2^s}$ belongs to the Riemann zeta function.

In the same, because $\frac{1}{2^s} = (\frac{1}{2})^s$, in which its real part is $\frac{1}{2}$, so that the real part of the every non-trivial zeros of the Riemann zeta function is $\frac{1}{2}$.