The curvature tensor of the stationary accelerated frame in the gravity field

Sangwha-Yi
Department of Math, Taejon University, 300-716

ABSTRACT
In the general relativity theory, we define the accelerated frame that moves in \(\hat{r} \)-axis in the curved time-space. And we calculate the curvature tensor of the stationary accelerated frame in the gravity field. In this time, the curvature tensor divide the observational curvature tensor of the people and the curvature tensor of the people’s self on the planet in the gravity field.

PACS Number: 04.04.90.+e
Key words: The general relativity theory,
 The tetrad,
 The curved time-space,
 The accelerated frame
 The curvature tensor

e-mail address: sangwh@nate.com
Tel: 051-624-3953
1. Introduction

This theory’s object is that defines the accelerated frame that moves in \hat{r}-axis in the curved space-time. The Schwarzschild solution is

$$d\tau^2 = (1 - \frac{2GM}{rc^2})dt^2 - \frac{1}{c^2} \left[\frac{dr^2}{1 - \frac{2GM}{rc^2}} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right]$$ \hspace{1cm} (1)

In this time, a moving matter’s acceleration is \mathbf{a} in the Schwarzschild space-time.

$$a = a_{\text{inertial}} - g = \frac{d}{dt} \left(\frac{u}{\sqrt{1 - \frac{2GM}{rc^2} - \frac{u^2}{c^2}}} \right), u = \sqrt{1 - \frac{2GM}{rc^2}}$$ \hspace{1cm} (2)

a_{inertial} is the inertial acceleration, g is the pure gravity acceleration.

If $a_0 = a / \sqrt{1 - \frac{2GM}{rc^2}} = -g / \sqrt{1 - \frac{2GM}{rc^2}}$, $a_{\text{inertial}} = 0$ is

$$a_0 = \frac{1}{\sqrt{1 - \frac{2GM}{rc^2}}} \frac{d}{dt} \left(\frac{u}{\sqrt{1 - \frac{2GM}{rc^2} - \frac{u^2}{c^2}}} \right) = \frac{d}{dt} \left(\frac{V}{\sqrt{1 - \frac{V^2}{c^2}}} \right),$$

$$V = \frac{df}{dt} = \frac{dr}{dt} \frac{1}{\sqrt{1 - \frac{2GM}{rc^2}}}, \quad df = dt \sqrt{1 - \frac{2GM}{rc^2}}, \quad \dot{f} = \frac{dr}{\sqrt{1 - \frac{2GM}{rc^2}}}$$

$$a_0 \hat{f} = \frac{V}{\sqrt{1 - \frac{V^2}{c^2}}}, \quad V = \sqrt{1 + a_0^2 \hat{f}^2}, \quad V \text{ is the } \hat{f} \text{-axis’s velocity}$$ \hspace{1cm} (3)

If $\frac{d\theta}{dt} = \frac{d\phi}{dt} = 0$, the solution is

$$d\tau^2 = (1 - \frac{2GM}{rc^2})dt^2 - \frac{1}{c^2} \frac{dr^2}{1 - \frac{2GM}{rc^2}} = \dot{f}^2 - \frac{1}{c^2} \dot{\theta}^2 = \dot{f}^2 \left(1 - \frac{V^2}{c^2} \right)$$

$$= \frac{df^2}{\sqrt{1 + a_0^2 \hat{f}^2}}$$ \hspace{1cm} (4)

In this time,
\[\tau = \int d\tau = \int \frac{df}{\sqrt{1 + \frac{a_0^2 \dot{t}^2}{c^2}}} = \frac{c}{a_0} \sinh^{-1}(\frac{a_0 \dot{t}}{c}). \]

\[\dot{t} = \frac{c}{a_0} \sinh(\frac{a_0 \tau}{c}), \quad \ddot{t} = \int Vd\dot{t} = \int \frac{a_0 \dot{t}d\dot{t}}{\sqrt{1 + \frac{a_0^2 \dot{t}^2}{c^2}}} = \frac{c^2}{a_0} \int \frac{a_0^2 \dot{t}^2}{c^2} \quad \frac{c^2}{a_0} \cosh(\frac{a_0 \tau}{c}) \]

\[\frac{df}{d\tau} = \cosh(\frac{a_0 \tau}{c}). \quad \frac{d\ddot{t}}{d\tau} = \sinh(\frac{a_0 \tau}{c}) \quad \tag{5} \]

2. The tetrad in the curved space-time

The tetrad \(\mathbf{e}_\mu^\hat{\alpha} \) is the unit vector defined by the following formula.

\[\eta_{\hat{a}\hat{b}} \mathbf{e}_\mu^\hat{a} \mathbf{e}_\nu^\hat{b} = g_{\mu\nu} \quad \tag{6} \]

In this time, if a matter moves in \(\hat{t} \)-axis in the curved space-time,

\[\eta_{\hat{a}\hat{b}} \mathbf{e}_\mu^\hat{a}(\tau) \mathbf{e}_\nu^\hat{b}(\tau) = g_{\mu\nu} \quad \eta_{\hat{a}\hat{b}} = \eta_{\hat{b}\hat{a}} \cap g_{\hat{a}\hat{b}} = g_{\hat{b}\hat{a}} \quad \tag{7} \]

Hence, Eq(6), Eq(7) is

\[\eta_{\hat{a}\hat{b}} \mathbf{e}_\mu^\hat{a}(\tau) \mathbf{e}_\nu^\hat{b}(\tau) = \eta_{\hat{0}\hat{0}} = -1 \quad \tag{8} \]

\[d\tau^2 = -\frac{1}{c^2} \eta_{\hat{a}\hat{b}} d\mathbf{x}^\hat{a} d\mathbf{x}^\hat{b} \]

\[\rightarrow -1 = \eta_{\hat{a}\hat{b}} \left(\frac{1}{c} \frac{d\mathbf{x}^\hat{a}}{d\tau} \right) \left(\frac{1}{c} \frac{d\mathbf{x}^\hat{b}}{d\tau} \right) = \eta_{\hat{a}\hat{b}} \mathbf{e}_\mu^\hat{a}(\tau) \mathbf{e}_\nu^\hat{b}(\tau) \]

\[\mathbf{x}^\hat{a} = (c\hat{t}, \hat{r}, \hat{\theta}, \hat{\phi}) \quad \tag{9} \]

According to Eq(5), Eq(9)

\[\mathbf{e}_\mu^\hat{0}(\tau) = \frac{1}{c} \frac{d\mathbf{x}_\mu}{d\tau} = (\cosh(\frac{a_0 \tau}{c}), \sinh(\frac{a_0 \tau}{c}), 0, 0) \quad \tag{10} \]

About \(\hat{\theta} \)-axis’s and \(\hat{\phi} \)-axis’s orientation

\[\eta_{\hat{2}\hat{2}} \mathbf{e}_\mu^{\hat{2}}(\tau) \mathbf{e}_\nu^{\hat{2}}(\tau) = \eta_{\hat{2}\hat{2}} = 1, \quad \mathbf{e}_\mu^{\hat{2}}(\tau) = (0, 0, 1) \]
\[\eta_{33} e^{\hat{3}}(r) e^{\hat{3}}(r) = \eta_{33} = 1, \ e^{\hat{3}}(r) = (0, 0, 0, 1) \] (11)

And the other vector \(e^{\hat{1}}(r) \) has to satisfy the tetrad condition, Eq (6), Eq (7)

\[e^{\hat{1}}(r) = (\sinh(\frac{\mathbf{a}_0 r}{c}), \cosh(\frac{\mathbf{a}_0 r}{c}), 0, 0) \] (12)

In this time,

\[\overline{\sigma}^\rho_i = (1/\sqrt{1 - \frac{2GM}{r c^2}}, 0, 0, 0), \overline{\sigma}^\rho_j = (0, \sqrt{1 - \frac{2GM}{r c^2}}, 0, 0) \]

\[\overline{\sigma}^\rho_\theta = (0, 0, 1/r, 0), \overline{\sigma}^\rho_\phi = (0, 0, 0, 1/r \sin \theta) \]

\[g_{\rho \sigma} \overline{\sigma}^\rho_i \overline{\sigma}^\sigma_j = \eta_{i j} \] (13)

\[\frac{\mathbf{a}_0}{c} \hat{t} = \sinh(\frac{\mathbf{a}_0}{c} r) \sqrt{1 - \frac{v}{c}} \sqrt{1 + \frac{\mathbf{a}_0^2 t^2}{c^2}} = \cosh(\frac{\mathbf{a}_0}{c} r) = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \] (14)

Therefore, the Lorentz transformation \(\mathbf{B}^{\hat{\nu}}_{\hat{\mu}}(\nu) \) is

\[\mathbf{B}^{\hat{\nu}}_{\hat{\mu}}(\nu) = \begin{pmatrix}
\frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} & \frac{v}{c} & 0 & 0 \\
\frac{\mathbf{v}}{c} & \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} & 0 & 0 \\
0 & 0 & \sqrt{1 - \frac{v^2}{c^2}} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \]

\[= e^{\hat{\nu}}_{\hat{\mu}}(r) = \begin{pmatrix}
\cosh(\frac{\mathbf{a}_0}{c} r) & \sinh(\frac{\mathbf{a}_0}{c} r) & 0 & 0 \\
\sinh(\frac{\mathbf{a}_0}{c} r) & \cosh(\frac{\mathbf{a}_0}{c} r) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \] (15)

\[\overline{\sigma}^\rho_{\hat{\nu}} = \mathbf{B}^{\hat{\nu}}_{\hat{\mu}}(\nu) \overline{\sigma}^\rho_{\hat{\mu}} = e^{\hat{\nu}}_{\hat{\mu}}(r) \overline{\sigma}^\rho_j \] (16)

Hence,

\[g_{\rho \sigma} \overline{\sigma}^\rho_i \overline{\sigma}^\sigma_j = \eta_{i j} \]

\[g_{\rho \sigma} \mathbf{B}^{\hat{\nu}}_{\hat{\mu}}(\nu) \overline{\sigma}^\rho_i \overline{\sigma}^\sigma_j = g_{\rho \sigma} \overline{\sigma}^\rho_{\hat{\nu}} \overline{\sigma}^\sigma_{\hat{\mu}} = \eta_{i j} e^{\hat{\nu}}_{\hat{\mu}}(r) e^{\hat{\mu}}_{\hat{\nu}}(r) = \eta_{i j} \] (17)
3. The accelerated frame in the curved space-time.

About the accelerated frame ξ in the curved space-time,

$$d\tau^2 = -\frac{1}{c^2} \eta_{\alpha\beta} d\xi^\alpha d\xi^\beta = -\frac{1}{c^2} \eta_{\alpha\beta} \frac{\partial \hat{\xi}^\alpha}{\partial \xi^\mu} \frac{\partial \hat{\xi}^\beta}{\partial \xi^v} d\xi^\mu d\xi^v$$

$$= -\frac{1}{c^2} \eta_{\alpha\beta} e^{\hat{\alpha} \mu} e^{\hat{\beta} \nu} d\xi^\mu d\xi^v$$

$$= -\frac{1}{c^2} g_{\mu\nu} d\xi^\mu d\xi^v$$

$$e^{\hat{\alpha} \mu} = \frac{\partial \hat{\xi}^\alpha}{\partial \xi^\mu}, \quad \frac{\partial e^{\hat{\alpha} \beta}}{\partial \xi^1} = \frac{\partial^2 \hat{\xi}^\alpha}{\partial \xi^0 \partial \xi^1} = \frac{\partial e^{\hat{\alpha} \beta}}{\partial \xi^0}$$

(18)

$$e^{\hat{\alpha} \beta}(\xi^0) = \frac{1}{c} \frac{\partial \hat{\xi}^\alpha}{\partial \xi^0} = (1 + \frac{a_{0,21}}{c^2}) \cosh(\frac{a_{0,20}}{c}), (1 + \frac{a_{0,21}}{c^2}) \sinh(\frac{a_{0,20}}{c}), 0, 0)$$

(20)

$$e^{\hat{\alpha} \beta}(\xi^0) = \frac{\partial \hat{\xi}^\alpha}{\partial \xi^1} = \sinh(\frac{a_{0,20}}{c}), \cosh(\frac{a_{0,20}}{c}), 0, 0)$$

(21)

$$e^{\hat{\alpha} \beta}(\xi^0) = \frac{\partial \hat{\xi}^\alpha}{\partial \xi^2} = (0, 0, 1, 0), e^{\hat{\alpha} \beta}(\xi^0) = (0, 0, 1, 0)$$

(22)

$$d\xi^\alpha \frac{\partial \hat{\xi}^\alpha}{\partial \xi^\mu} d\xi^\mu = e^{\hat{\alpha} \beta}(\xi^0) d\xi^\beta + e^{\hat{\alpha} \beta}(\xi^0) d\xi^\beta + e^{\hat{\alpha} \beta}(\xi^0) d\xi^\beta$$

(23)

Hence,

$$c d\bar{t} = c dt \sqrt{1 - \frac{2GM}{rc^2}} = (1 + \frac{a_{0,21}}{c^2}) \cosh(\frac{a_{0,20}}{c}) d\xi^\beta + \sinh(\frac{a_{0,20}}{c}) d\xi^1$$

$$d\bar{t} = \frac{dr}{\sqrt{1 - \frac{2GM}{rc^2}}} = (1 + \frac{a_{0,21}}{c^2}) \sinh(\frac{a_{0,20}}{c}) d\xi^\beta + \cosh(\frac{a_{0,20}}{c}) d\xi^1$$

$$d\theta = d\xi^2, \quad d\phi = d\xi^3$$

(24)
\[d\tau^2 = (1 - \frac{2GM}{rc^2})dt^2 - \frac{1}{c^2} \left[\frac{dr^2}{c^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right] \]

\[= dt^2 - \frac{1}{c^2} \left[dr^2 + d\theta^2 + d\phi^2 \right] \]

\[= (1 + \frac{a_0 \xi^1}{c^2})^2 (d\xi^0)^2 - \frac{1}{c^2} [(d\xi^1)^2 + (d\xi^2)^2 + (d\xi^3)^2] \] \hspace{1cm} (25)

The coordinate transformation is

\[c\hat{t} = (\frac{c^2}{a_0} + \xi^1) \sinh(\frac{a_0 \xi^0}{c}), \hat{r} = (\frac{c^2}{a_0} + \xi^1) \cosh(\frac{a_0 \xi^0}{c}) - \frac{c^2}{a_0} \]

\[\hat{\theta} = \xi^2, \hat{\phi} = \xi^3 \] \hspace{1cm} (26)

The inverse-transformation is

\[\xi^0 = \frac{c}{a_0} \text{tanh}^{-1}\left(\frac{c\hat{t}}{\hat{r} + \frac{c^2}{a_0}}\right), \xi^1 = \sqrt{(\hat{r} + \frac{c^2}{a_0})^2 - c^2 \hat{t}^2} - \frac{c^2}{a_0} \]

\[\xi^2 = \hat{\theta}, \xi^3 = \hat{\phi} \] \hspace{1cm} (27)

If we calculate the curvature tensor \(R_{\mu\nu\lambda\delta}(\xi) \),

\[R_{\mu\nu\lambda\delta}(\xi) = \frac{\partial^\lambda}{\partial \xi^\alpha} \frac{\partial^\mu}{\partial \xi^\beta} \frac{\partial^\nu}{\partial \xi^\gamma} \frac{\partial^\delta}{\partial \xi^\lambda} R_{\alpha\beta\gamma\delta}(\hat{X}) \]

\[= e^{\hat{\mu}}(\xi^0)e^{\hat{\nu}}(\xi^0)e^{\hat{\rho}}(\xi^0)e^{\hat{\lambda}}(\xi^0)R_{\alpha\beta\gamma\delta}(\hat{X}) \] \hspace{1cm} (28)

\[R_{\hat{t}\hat{t}\hat{t}\hat{t}} = -R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = \frac{2GM}{r^3 c^2}. \]

\[R_{\hat{t}\hat{t}\hat{t}\hat{t}} = -R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = -\frac{GM}{r^3 c^2} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = -R_{\hat{t}\hat{t}\hat{t}\hat{t}} \]

\[R_{\hat{t}\hat{t}\hat{t}\hat{t}} = -R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = \frac{2GM}{r^3 c^2} \]

\[R_{\hat{t}\hat{t}\hat{t}\hat{t}} = -R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = \frac{GM}{r^3 c^2} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = R_{\hat{t}\hat{t}\hat{t}\hat{t}} = -R_{\hat{t}\hat{t}\hat{t}\hat{t}} \] \hspace{1cm} (29)
Therefore,
\[e^{\xi_0}(\xi^0) = \left(1 + \frac{a_0 \xi^0}{c^2}\right) \cosh\left(\frac{a_0 \xi^0}{c}\right), \left(1 + \frac{a_0 \xi^0}{c^2}\right) \sinh\left(\frac{a_0 \xi^0}{c}\right), 0, 0 \]
\[e^{\xi_1}(\xi^0) = \left(\sinh\left(\frac{a_0 \xi^0}{c}\right), \cosh\left(\frac{a_0 \xi^0}{c^2}\right), 0, 0 \right) \]
\[e^{\xi_2}(\xi^0) = (0, 0, 1, 0), e^{\xi_3}(\xi^0) = (0, 0, 1, 0) \]

(30)

\[R_{0i0j}(\xi) = \frac{2GM}{r^2c^2} (1 + \frac{a_0 \xi^1}{c^2}), R_{0i0j}(\xi) = R_{0j0i}(\xi) = -\frac{GM}{r^3c^2} (1 + \frac{a_0 \xi^1}{c^2}) \]
\[R_{2323}(\xi) = -\frac{2GM}{r^3c^2}, R_{1212}(\xi) = R_{1313}(\xi) = \frac{GM}{r^3c^2} \]

(31)

Specially, if \(t = 0 \),
\[u = \frac{1}{\sqrt{1 - \frac{2GM}{rc^2}}} \frac{dr}{dt} = 0 \rightarrow V = \frac{dr}{dt} = \frac{a_0 \xi^0}{\sqrt{1 + \frac{a_0^2 \xi^2}{c^2}}} \frac{dr}{dt} = \frac{1}{\left(1 - \frac{2GM}{rc^2}\right)} = 0 \]

(32)

Therefore, if \(t = \xi^0 = 0 \), the theory treats the real situation.

\[\xi^1 = \sqrt{(\hat{r} + \frac{c^2}{a_0})^2 - c^2 \hat{t}^2 - \frac{c^2}{a_0}} = \hat{r} \]
\[d\hat{r} = \frac{dr}{\sqrt{1 - \frac{2GM}{rc^2}}} \rightarrow \hat{r} = \sqrt{r - \frac{2GM}{c^2}} + \frac{2GM}{r^2c^2} \ln |\sqrt{r} + \sqrt{r - \frac{2GM}{c^2}}| - \sqrt{r_0 - \frac{2GM}{c^2}} - \frac{2GM}{r^2c^2} \ln |\sqrt{r_0} + \sqrt{r_0 - \frac{2GM}{c^2}}| \]

\[a_0 = \frac{1}{\sqrt{1 - \frac{2GM}{rc^2}}} \frac{d}{dt} \left(\frac{u}{\sqrt{1 - \frac{2GM}{rc^2} - u^2}}\right) = \frac{a}{\sqrt{1 - \frac{2GM}{rc^2}}} \]
\[a = -g = \frac{d}{dt} \left(\frac{u}{\sqrt{1 - \frac{2GM}{rc^2} - u^2}}\right) \]

\[g \] is the pure gravity acceleration.
\[r_0 \] is the location of the stationary accelerated frame

(33)
In this time, in the curved space-time, the curvature tensor $R_{\mu\nu\rho\lambda}(\hat{\xi})$ of the stationary accelerated frame is

$$R_{0101}(\hat{\xi}) = \frac{2GM}{r^3c^2} (1 + \frac{a_0\hat{x}_1}{c^2})^2 = \frac{2GM}{r^3c^2} (1 + \frac{a_0\hat{r}}{c^2})^2$$

$$= \frac{2GM}{r^3c^2} \left[1 + \frac{a_0}{c^2} \sqrt{r} \right. \left. \sqrt{r - \frac{2GM}{c^2}} + \frac{2GM}{c^2} \ln |\sqrt{r} + \sqrt{r - \frac{2GM}{c^2}}| \right.$$

$$\left. - \sqrt{r_0} \sqrt{r_0 - \frac{2GM}{c^2}} - \frac{2GM}{c^2} \ln |\sqrt{r_0} + \sqrt{r_0 - \frac{2GM}{c^2}}| \right] \}^2$$

$$= \frac{2GM}{r^3c^2} \left[1 - \frac{1}{c^2} \left\{ \sqrt{r} \right\} \sqrt{r - \frac{2GM}{c^2}} + \frac{2GM}{c^2} \ln |\sqrt{r} + \sqrt{r - \frac{2GM}{c^2}}| \right.$$

$$\left. - \sqrt{r_0} \sqrt{r_0 - \frac{2GM}{c^2}} - \frac{2GM}{c^2} \ln |\sqrt{r_0} + \sqrt{r_0 - \frac{2GM}{c^2}}| \right] \}^2$$

$$R_{0202}(\hat{\xi}) = R_{0303}(\hat{\xi}) = -\frac{GM}{r^3c^2} (1 + \frac{a_0\hat{x}_1}{c^2})^2 = -\frac{GM}{r^3c^2} (1 + \frac{a_0\hat{r}}{c^2})^2$$

$$= -\frac{GM}{r^3c^2} \left[1 + \frac{a_0}{c^2} \{ \sqrt{r} \sqrt{r - \frac{2GM}{c^2}} + \frac{2GM}{c^2} \ln |\sqrt{r} + \sqrt{r - \frac{2GM}{c^2}}| \right.$$

$$\left. - \sqrt{r_0} \sqrt{r_0 - \frac{2GM}{c^2}} - \frac{2GM}{c^2} \ln |\sqrt{r_0} + \sqrt{r_0 - \frac{2GM}{c^2}}| \right] \}^2$$

$$= -\frac{GM}{r^3c^2} \left[1 - \frac{1}{c^2} \left\{ \sqrt{r} \right\} \sqrt{r - \frac{2GM}{c^2}} + \frac{2GM}{c^2} \ln |\sqrt{r} + \sqrt{r - \frac{2GM}{c^2}}| \right.$$

$$\left. - \sqrt{r_0} \sqrt{r_0 - \frac{2GM}{c^2}} - \frac{2GM}{c^2} \ln |\sqrt{r_0} + \sqrt{r_0 - \frac{2GM}{c^2}}| \right] \}^2$$

$$R_{2323}(\hat{\xi}) = -\frac{2GM}{r^3c^2}, \quad R_{1212}(\hat{\xi}) = R_{1313}(\hat{\xi}) = \frac{GM}{r^3c^2}$$

g is the pure gravity acceleration.
In this time, in Eq(10), Eq(11), Eq(12), if uses ξ^0 instead of τ and multiply $\exp(\frac{a_0}{c^2} \xi^1)$

$$e^{a_0}(\xi^0) = \frac{1}{c} \frac{\partial \hat{x}^a}{\partial \xi^0} = (\exp(\frac{a_0}{c^2} \xi^0), \exp(\frac{a_0}{c^2} \xi^1), \exp(\frac{a_0}{c^2} \xi^2), \exp(\frac{a_0}{c^2} \xi^3), \exp(\frac{a_0}{c^2} \xi^0), 0, 0)$$ (35)

$$e^{a_1}(\xi^0) = \frac{\partial \hat{x}^a}{\partial \xi^1} = (\exp(\frac{a_0}{c^2} \xi^0), \exp(\frac{a_0}{c^2} \xi^1), \exp(\frac{a_0}{c^2} \xi^2), \exp(\frac{a_0}{c^2} \xi^3), \exp(\frac{a_0}{c^2} \xi^0), 0, 0)$$ (36)

$$e^{a_2}(\xi^0) = \frac{\partial \hat{x}^a}{\partial \xi^2} = (0, 0, 1, 0), e^{a_3}(\xi^0) = \frac{\partial \hat{x}^a}{\partial \xi^3} = (0, 0, 1, 0)$$ (37)

$$d\hat{x}^a = \frac{\partial \hat{x}^a}{\partial \xi^\mu} d\xi^\mu = e^{a_0}(\xi^0) \frac{dc}{dt} + e^{a_1}(\xi^0) \frac{dr}{dt} + e^{a_2}(\xi^0) \frac{d\theta}{dt} + e^{a_3}(\xi^0) \frac{d\phi}{dt}$$ (38)

Hence,

$$cd\hat{t} = cd\tau \sqrt{1 - \frac{2GM}{rc^2}} = \exp(\frac{a_0}{c^2} \xi^1) \frac{dc}{dt} + \exp(\frac{a_0}{c^2} \xi^0) \frac{dr}{dt} + \exp(\frac{a_0}{c^2} \xi^1) \frac{d\theta}{dt} + \exp(\frac{a_0}{c^2} \xi^3) \frac{d\phi}{dt}$$

$$d\tau = \sqrt{1 - \frac{2GM}{rc^2}} c d\hat{t} = \exp(\frac{a_0}{c^2} \xi^1) \frac{dc}{dt} + \exp(\frac{a_0}{c^2} \xi^0) \frac{dr}{dt} + \exp(\frac{a_0}{c^2} \xi^1) \frac{d\theta}{dt} + \exp(\frac{a_0}{c^2} \xi^3) \frac{d\phi}{dt}$$

$$d\hat{\theta} = d\xi^2, \quad d\hat{\phi} = d\xi^3$$ (39)

$$d\tau^2 = (1 - \frac{2GM}{rc^2}) c d\hat{t}^2 - \frac{1}{c^2} \left[\frac{dc}{d\hat{t}} d\hat{t}^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 \right]$$

$$= d\hat{t}^2 - \frac{1}{c^2} \left[d\hat{t}^2 + d\hat{\theta}^2 + d\hat{\phi}^2 \right]$$

$$= \exp(2 \frac{a_0}{c^2} \xi^1) (d\xi^0)^2 - \frac{1}{c^2} \left[\exp(2 \frac{a_0}{c^2} \xi^1) (d\xi^1)^2 + (d\xi^2)^2 + (d\xi^3)^2 \right]$$ (40)

The coordinate transformation is...
\[c^\ell = \frac{c^2}{a_0} \exp\left(\frac{a_0}{c^2} \xi^1\right) \sinh\left(\frac{a_0}{c^2} \xi^0\right), \quad \hat{r} = \frac{c^2}{a_0} \exp\left(\frac{a_0}{c^2} \xi^1\right) \cosh\left(\frac{a_0}{c^2} \xi^0\right) - \frac{c^2}{a_0} \]

\[\hat{\theta} = \hat{\xi}^2, \quad \hat{\phi} = \hat{\xi}^3 \]

(41)

The inverse-transformation is

\[\hat{\xi}^0 = \frac{c}{a_0} \tanh^{-1}\left(\frac{c^\ell}{\hat{r} + \frac{c^2}{a_0}}\right), \quad \hat{\xi}^1 = \frac{c^2}{a_0} \ln \left| \frac{a_0}{c^2} \sqrt{\left(\hat{r} + \frac{c^2}{a_0}\right)^2 - c^2 \hat{\xi}^2} \right| \]

\[\hat{\xi}^2 = \hat{\theta}, \quad \hat{\xi}^3 = \hat{\phi} \]

(42)

If we calculate the curvature tensor \(R_{\mu\nu\rho\lambda}(\xi) \).

\[R_{\mu\nu\rho\lambda}(\xi) = \frac{\partial \hat{x}^\mu}{\partial \xi^\alpha} \frac{\partial \hat{x}^\rho}{\partial \xi^\beta} \frac{\partial \hat{x}^\gamma}{\partial \xi^\gamma} \frac{\partial \hat{x}^\delta}{\partial \xi^\lambda} R_{\alpha\beta\gamma\delta}(\hat{X}) \]

\[= e^\hat{\alpha}_{\hat{\mu}}(\hat{\xi}^0) e^\hat{\beta}_{\hat{\nu}}(\hat{\xi}^0) e^\hat{\gamma}_{\hat{\rho}}(\hat{\xi}^0) e^\hat{\delta}_{\hat{\lambda}}(\hat{\xi}^0) R_{\alpha\beta\gamma\delta}(\hat{X}) \]

(43)

\[R_{\hat{t}\hat{t}\hat{t}\hat{t}} = -R_{\hat{t}\hat{r}\hat{r}\hat{r}} = R_{\hat{r}\hat{t}\hat{r}\hat{t}} = -R_{\hat{r}\hat{t}\hat{r}\hat{r}} = -\frac{2GM}{r^3 c^2}, \]

\[R_{\hat{t}\hat{r}\hat{t}\hat{r}} = -R_{\hat{t}\hat{t}\hat{r}\hat{r}} = R_{\hat{r}\hat{t}\hat{r}\hat{t}} = -R_{\hat{r}\hat{t}\hat{t}\hat{r}} = -\frac{GM}{r^3 c^2} = R_{\hat{t}\hat{r}\hat{t}\hat{r}} = R_{\hat{r}\hat{t}\hat{r}\hat{t}} = -R_{\hat{r}\hat{t}\hat{r}\hat{r}} = -R_{\hat{r}\hat{t}\hat{t}\hat{r}} \]

(44)

Hence,

\[e^{\hat{\alpha}_{\hat{0}}(\hat{\xi}^0)} = (\exp(\frac{a_0}{c^2} \xi^1) \cosh(\frac{a_0}{c^2} \xi^0), \exp(\frac{a_0}{c^2} \xi^1) \sinh(\frac{a_0}{c^2} \xi^0)), 0, 0) \]

\[e^{\hat{\alpha}_{\hat{1}}(\hat{\xi}^0)} = (\exp(\frac{a_0}{c^2} \xi^1) \sinh(\frac{a_0}{c^2} \xi^0), \exp(\frac{a_0}{c^2} \xi^1) \cosh(\frac{a_0}{c^2} \xi^0)), 0, 0) \]

\[e^{\hat{\alpha}_{\hat{2}}(\hat{\xi}^0)} = (0, 0, 1, 0), e^{\hat{\alpha}_{\hat{3}}(\hat{\xi}^0)} = (0, 0, 1, 0) \]

(45)
\[R_{0101}(\xi) = \frac{2GM}{r^3c^2} \exp\left(4\frac{a_0\xi}{c^2}\right), \quad R_{0000}(\xi) = R_{0000}(\xi) = -\frac{GM}{r^3c^2} \exp\left(2\frac{a_0\xi}{c^2}\right) \]

\[R_{2222}(\xi) = -\frac{2GM}{r^3c^2}, \quad R_{1212}(\xi) = R_{1313}(\xi) = \frac{GM}{r^2c^2} \exp\left(2\frac{a_0\xi}{c^2}\right) \]

(46)

Specially, if \(t = 0 \),

\[
\frac{1}{\sqrt{1 - \frac{2GM}{rc^2}}} \frac{dr}{dt} = 0 \rightarrow V = \frac{d\hat{r}}{dt} = \frac{a_0\hat{r}}{\sqrt{1 + \frac{a_0^2\hat{r}^2}{c^2}}} = \frac{dr}{dt} \left(1 - \frac{2GM}{rc^2}\right) = 0
\]

(47)

Hence, if \(t = \hat{t} = \xi^0 = 0 \), the theory treats the real situation.

\[
\xi^1 = \frac{c^2}{a_0} \ln \left| \frac{a_0^2}{c^2} \left(\hat{r} + \frac{c^2}{a_0^2}\right)^2 - c^2\hat{r}^2 \right| = \frac{c^2}{a_0} \ln \left|1 + \frac{a_0^2\hat{r}}{c^2}\right|
\]

\[
\exp\left(\frac{a_0\xi^1}{c^2}\right) = 1 + \frac{a_0\hat{r}}{c^2}
\]

\[
d\hat{r} = \frac{dr}{\sqrt{1 - \frac{2GM}{rc^2}}} \rightarrow \hat{r} = \sqrt{r} \left[\sqrt{r - \frac{2GM}{c^2}} + \frac{2GM}{c^2} \ln \left| \sqrt{r} + \sqrt{r - \frac{2GM}{c^2}} \right| \right. \\
\left. - \sqrt{r_0} \sqrt{r_0 - \frac{2GM}{c^2}} - \frac{2GM}{c^2} \ln \left| \sqrt{r_0} + \sqrt{r_0 - \frac{2GM}{c^2}} \right| \right]
\]

\[
a_0 = \frac{1}{\sqrt{1 - \frac{2GM}{rc^2}}} \frac{d}{dt} \left(\frac{u}{\sqrt{1 - \frac{2GM}{rc^2} - \frac{u^2}{c^2}}} \right) = \frac{a}{\sqrt{1 - \frac{2GM}{rc^2} - \frac{u^2}{c^2}}} \\
\]

\[
a = -g = \frac{d}{dt} \left(\frac{u}{\sqrt{1 - \frac{2GM}{rc^2} - \frac{u^2}{c^2}}} \right)
\]

\(g \) is the pure gravity acceleration.

\(r_0 \) is the location of the stationary accelerated frame

(48)

In this time, in the curved space-time, the curvature tensor \(R_{\mu\nu\rho\sigma}(\xi) \) of the stationary accelerated frame is

\[
R_{0101}(\xi) = \frac{2GM}{r^3c^2} \exp\left(4\frac{a_0\xi}{c^2}\right) = \frac{2GM}{r^3c^2} \left(1 + \frac{a_0\hat{r}}{c^2}\right)^4
\]
\[
\frac{2GM}{r^3c^2} \left[1 + \frac{a_0}{c^2} \left\{ \sqrt{r} \left(\frac{1}{ \sqrt{r} - \frac{2GM}{c^2} } + \frac{2GM}{c^2} \ln | \sqrt{r} + \frac{r^2 - 2GM}{c^2} | \right) - \sqrt{r_0} \left(\frac{1}{ \sqrt{r_0} - \frac{2GM}{c^2} } - \frac{2GM}{c^2} \ln | \sqrt{r_0} + \frac{r_0^2 - 2GM}{c^2} | \right) \right\}^4 \right]
\]

\[
= \frac{2GM}{r^3c^2} \left[1 - \frac{1}{c^2} \frac{\sqrt{r}}{\sqrt{1 - \frac{2GM}{rc^2}}} \left\{ \sqrt{r} \left(\frac{1}{ \sqrt{r} - \frac{2GM}{c^2} } + \frac{2GM}{c^2} \ln | \sqrt{r} + \frac{r^2 - 2GM}{c^2} | \right) - \sqrt{r_0} \left(\frac{1}{ \sqrt{r_0} - \frac{2GM}{c^2} } - \frac{2GM}{c^2} \ln | \sqrt{r_0} + \frac{r_0^2 - 2GM}{c^2} | \right) \right\}^4 \right]
\]

\[R_{0202}(\xi) = R_{0303}(\xi) = -\frac{GM}{r^3c^2} \exp\left(2\frac{a_0}{c^2} \xi \right) = \frac{GM}{r^3c^2} \left(1 + \frac{a_0}{c^2} r \right)^2
\]

\[-\frac{GM}{r^3c^2} \left[1 + \frac{a_0}{c^2} \left\{ \sqrt{r} \left(\frac{1}{ \sqrt{r} - \frac{2GM}{c^2} } + \frac{2GM}{c^2} \ln | \sqrt{r} + \frac{r^2 - 2GM}{c^2} | \right) - \sqrt{r_0} \left(\frac{1}{ \sqrt{r_0} - \frac{2GM}{c^2} } - \frac{2GM}{c^2} \ln | \sqrt{r_0} + \frac{r_0^2 - 2GM}{c^2} | \right) \right\}^2 \right]
\]

\[-\frac{GM}{r^3c^2} \left[1 - \frac{1}{c^2} \frac{\sqrt{r}}{\sqrt{1 - \frac{2GM}{rc^2}}} \left\{ \sqrt{r} \left(\frac{1}{ \sqrt{r} - \frac{2GM}{c^2} } + \frac{2GM}{c^2} \ln | \sqrt{r} + \frac{r^2 - 2GM}{c^2} | \right) - \sqrt{r_0} \left(\frac{1}{ \sqrt{r_0} - \frac{2GM}{c^2} } - \frac{2GM}{c^2} \ln | \sqrt{r_0} + \frac{r_0^2 - 2GM}{c^2} | \right) \right\}^2 \right]
\]

\[R_{2323}(\xi) = -\frac{2GM}{r^3c^2}.
\]

\[R_{1212}(\xi) = R_{1313}(\xi) = \frac{GM}{r^3c^2} \exp\left(2\frac{a_0}{c^2} \xi \right) = \frac{GM}{r^3c^2} \left(1 + \frac{a_0}{c^2} r \right)^2
\]

\[= \frac{GM}{r^3c^2} \left[1 + \frac{a_0}{c^2} \left\{ \sqrt{r} \left(\frac{1}{ \sqrt{r} - \frac{2GM}{c^2} } + \frac{2GM}{c^2} \ln | \sqrt{r} + \frac{r^2 - 2GM}{c^2} | \right) - \sqrt{r_0} \left(\frac{1}{ \sqrt{r_0} - \frac{2GM}{c^2} } - \frac{2GM}{c^2} \ln | \sqrt{r_0} + \frac{r_0^2 - 2GM}{c^2} | \right) \right\} \right]
\]
\[-\sqrt{r_0} \left(\frac{2GM}{c^2} - \frac{2GM}{c^2} \ln \left| \sqrt{r_0} + \sqrt{r_0 - \frac{2GM}{c^2}} \right| \right)^2 \]

\[= \frac{GM}{r^3 c^2} \left[1 - \frac{1}{c^2} \sqrt{1 - \frac{2GM}{rc^2}} \right] \left(\sqrt{r} - \frac{2GM}{c^2} + \frac{2GM}{c^2} \ln \left| \sqrt{r} + \sqrt{r - \frac{2GM}{c^2}} \right| \right) \]

\[-\sqrt{r_0} \left(\frac{2GM}{c^2} - \frac{2GM}{c^2} \ln \left| \sqrt{r_0} + \sqrt{r_0 - \frac{2GM}{c^2}} \right| \right)^2 \]

\[g \text{ is the pure gravity acceleration.} \]

\[r_0 \text{ is the location of the stationary accelerated frame} \quad (49)\]

4. Conclusion

In the general relativity theory, we define the accelerated frame that moves in \(\hat{t} \)-axis in the curved space-time. Specially, if \(t = \hat{t} = \xi^0 = 0 \), this theory treats the curvature tensor of the stationary accelerated frame in the curved space-time in two-cases. In this time, \(R_{\hat{t} \hat{t} \hat{x} \hat{x}}(\hat{\xi}) \) is the observational curvature tensor of the people on the planet in the gravity field but \(R_{\hat{a} \hat{b} \hat{c} \hat{d}}(\hat{X}) \) is the curvature tensor of the people’s self on the planet in the gravity field.

Reference

relativity":Arxiv:gr-qc/0006095(2000)