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Abstract

We give an elementary analysis of the classical motion of a particle in the
spherically symmetric gravitational field of a Schwarzschild source, with due
regard to energy conservation. We observe that whereas a massive particle at
large distances could be attracted towards the central source, it would however
encounter repulsion as it comes close to the Schwarzschild surface. We also
note that there is a limited energy range for which the radial motion is ruled
by attraction. An attracted incoming particle reaches a maximum speed at a
specific distance greater than the Schwarzschild radius, before decelerating to
zero, then bouncing back. Like the radial motion, the orbital motion around
a Schwarzschild source would stop at the Schwarzschild radius. A massless
photon would always be repelled, with its speed decreasing as it approaches the
source, ultimately getting reflected at the Schwarzschild surface. The timing
problem associated with surface singularity is resolved by regarding particles as
Schwarzschild sources themselves. We depict a picture of ideal Schwarzschild
sources as mutually repulsive bubbles endowed with reflecting surfaces.

1 Introduction

It is well-known that the speed of light in Einstein’s special theory of relativity, or in flat
spacetime, is a universal constant. The general theory of relativity, besides providing
a geometrical description of gravitation, it also provides a framework for the variation
of the speed of light either as a function of space or of time. In the following, we
shall begin by reviewing the simple motion of a particle in special relativity, that is,
in the absence of a gravitational field. This demonstrates the well-known constraint
on particle speeds, with the speed of light being the upper bound. It also shows the
constancy of the speed of the photon.

The Lagrangian of a relativistic particle of mass m in a flat Minkowskian metric is:

L = −mc2
√

1− v2

c2
(1)

Here c is a universal constant speed, and ~v = d~r/dt represents the three components
of Cartesian velocity, v2 = ~v · ~v, and ~r(t) is the position vector as a function of time.
The above Lagrangian does not depend explicitly on the time variable, hence it is con-
servative of energy. Also, the Lagrangian does not depend explicitly on the coordinate
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variables, hence it is conservative of momentum, as well. The momentum is given by:

~p =
∂L
∂~v

=
m~v√
1− v2

c2

(2)

The total energy ε is given by the Hamiltonian:

ε = ~p · ~v − L =
mc2√
1− v2

c2

(3)

Notice from the above expressions that an upper bound on speeds is given by the
constant c. Notice as well, that the minimum value of p is 0, and the minimum value
of ε is mc2 (the rest energy), corresponding to ~v = 0. And we have the relativistic
equation relating energy and momentum:

ε2 = p2c2 +m2c4 (4)

We can solve for particle speed in terms of either the momentum or the energy:
v = c√

1+(mc
p

)2

v = c
√

1− (mc2

ε
)2

(5)

Notice that corresponding to the the range of values taken on by momentum (0 to ∞)
and energy (mc2 to ∞), the values of speed are real, between 0 and c. Both energy
and momentum being conserved, the motion of the particle is that of constant velocity.
There is is no acceleration.

For a massless particle, like the photon, the above formulae between energy, momentum,
and speed, become (with m = 0): ε = pc and v = c. Hence we have the important result
of special relativity (in the absence of gravitational fields): The speed of the photon (or
any massless particle) is given by the universal constant c. This result concerning the
motion of the photon could easily have been deduced by requiring that the associated
line element should vanish:

c2dt2 − dr2 = 0 ⇒ v =
dr

dt
= ±c (6)

In the following developments, we shall see how the above special relativistic results
should be modified in a metric describing a spherically symmetric gravitational field
which depends on radial coordinate.

2 Particle Mechanics in a Schwarzschild Field

A spherically symmetric metric solution of Einstein’s equations of general relativity is
given by the line element

ds2 =
(

1− s

r

)
c2dt2 −

(
1− s

r

)−1

dr2 − r2
(
dθ2 + sin2(θ)dφ2

)
(7)
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Here s = 2GM/c2 is the socalled Schwarzschild, or gravitational, radius of the source
of mass M , G is the Newtonian constant associated with the force of gravity, r is
the radial distance, θ and φ are the spherical angles, t is time. The form of the above
metric solution was first obtained by Schwarzschild.[1] However, Schwarzschild’s solution
is given in terms of a variable R = (r3 + s3)1/3 instead of r. We are told that the above
form is given by Hilbert.[2] It is clear that Schwarzschild’s insistence on the use of his
variable R was just to emphasize the fact that the above metric solution is only valid
for r > s (his r = 0 corresponds to our r = s), where the source density and other
components of the energy-momentum tensor must vanish. For r ≤ s, the theory breaks
down, for we must know the nature of the matter distribution in order to complete the
solution down to the origin. In fact it is easier to work directly with the above form of
solution, with the natural radial variable r, provided that we should remember that it
is only valid for r > s.

Correspondingly, the Lagrangian of a relativistic particle of mass m in a spherical metric
produced by a particle of mass M at the origin is:

L = −mc2
√

(1− s

r
)− (1− s

r
)−1

v2

c2
− r2ω

2

c2
(8)

where v and ω are the radial and angular speeds respectively. More explicitly, we have

v = ṙ ω2 = θ̇2 + sin2(θ)φ̇2 (9)

where the dot represents differentiation with respect to t.

The above system is independent of the time coordinate, hence it is conservative of
energy. However, it depends explicitly on the radial coordinate r and the angle θ,
whose associated momenta are not conserved, while the angular momentum associated
with φ is conserved. The radial and angular momenta are given by:

pr =
∂L
∂v

=
mv(1− s

r
)−1√

(1− s
r
)− (1− s

r
)−1 v2

c2
− r2 ω2

c2

(10)

pω =
∂L
∂ω

=
mr2ω√

(1− s
r
)− (1− s

r
)−1 v2

c2
− r2 ω2

c2

(11)

The conserved energy ε is given by the Hamiltonian:

ε = prv + pωω − L =
mc2(1− s

r
)√

(1− s
r
)− (1− s

r
)−1 v2

c2
− r2 ω2

c2

(12)

Notice that the minimum value of ε for all r > s is given by mc2
√

1− s/r corresponding
to v = ω = 0. This minimum value is smaller than mc2 for all r > s. The value mc2 is
the rest energy of the particle at infinite radial distance.
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3 Radial Motion

Let us consider radial motion corresponding to ω = 0, where we have

ε =
mc2

√
1− s

r√
1− (1− s

r
)−2 v2

c2

(13)

Solving this equation for the radial velocity, we obtain:

v = ±c(1− s

r
)

√
1− (

mc2

ε
)2(1− s

r
) (14)

Here, the ± sign corresponds to radially outgoing (+) or incoming (−) particle. Notice
that the radial velocity is zero for r = s, while for infinite radial distance, it is given by
the special relativistic value ±c

√
1− (mc2/ε)2.

That the radial velocity should tend to zero as r → s, even if the particle was acceler-
ating in free fall from large distances, indicates that there is pronounced gravitational
repulsion near that radius. The radial acceleration is given by:

ar =
dv

dr
v =

sc2

r2
(1− s

r
)

{
1−

(
mc2

ε

)2
3

2
(1− s

r
)

}
(15)

Notice that as r → s, to first order in (1− s/r), the acceleration becomes

ar ≈
sc2

r2

(
1− s

r

)
which is positive for r > s, indicating repulsion. Notice as well, that while the energy
satisfies

ε > mc2
√

3

2
(1− s

r
) r > s (16)

the radial acceleration ar is always positive, which means repulsion. Only in the range

mc2
√

1− s

r
< ε < mc2

√
3

2
(1− s

r
) (17)

we do have negative radial acceleration or attraction.

Starting with an incoming particle having a minimum value of energy ε = mc2
√

1− s/r,
the particle’s speed increases to a maximum value before decreasing to zero at the
Schwarzschild radius s = 2GM/c2. In fact, the maximum of speed occurs at radial
distance

r =
s

1− 2
3
( ε
mc2

)2
(18)

And the corresponding value of the maximum speed is

vmax =
2c

3
√

3

( ε

mc2

)2
(19)
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Hence for a particle starting from rest at infinity, with energy ε = mc2, the maximum
of speed achieved is (2c/3

√
3), and this occurs at radial distance r = 3s, three times

the Schwarzschild radius.

The following is a plot of the radial speed against radial distance for three values of
the ratio ε/mc2 = {0.9, 1, 1.1}, with three corresponding colors (red, green, blue), the
radial scale is given in units of the Schwarzschild distance s, and the speed scale in
units of c:

For the lowest value ε/mc2 = 0.9 (red color), we see that the motion could exist only
in a limited radial range. The lower value is the Schwarzschild radius r = s, and the
upper value (r ∼ 5.26s) corresponds to the solution of the equation

1− (
mc2

ε
)2(1− s

r
) = 0 (20)

A particle could oscillate between these two radii. This case corresponds to a particle
starting to fall from some finite distance where its energy is less than mc2. When
it reaches the Schwarzschild surface it gets reflected, and the motion continues in an
oscillatory manner. For the other two values ε/mc2 = 1, 1.1, however, we see that the
motion has no upper radial limit. We also see that the higher the energy, the higher
is the speed maximum, and the location of the maximum gets further away from the
center. For the intermediate value, corresponding to a particle falling from rest at
infinity, the location of the maximum is at three times the Schwarzschild radius.

The followings are two corresponding plots of radial acceleration in two ranges of ra-
dial distance, the radial scale being in units of the Schwarzschild distance s, and the
acceleration scale in units of sc2:
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It is clearly seen, for each energy value, how the radial acceleration is negative at large
distances (attraction), then becoming zero at centain values for r > s, becoming positive
(repulsion), getting to a maximum value, then descending to zero as r → s.

4 Orbital Motion

Let us consider orbital motion corresponding to the radial speed v = 0. The energy is
given by

ε =
mc2(1− s

r
)√

(1− s
r
)− r2 ω2

c2

(21)

where rω is the orbital speed. Solving for rω, we have:

rω = c

√
1− s

r

√
1− (

mc2

ε
)2(1− s

r
) (22)

Again we notice that this vanishes as r → s, and there is a maximum of orbital speed
equal to

(rω)max =
ε

2mc
(23)

The location of the maximum is at

r =
s

(1− ε2

2m2c4
)

(24)

This location is greater than the Schwarzschild radius for any acceptable value of energy

0 < ε <
√

2mc2

The following is a plot of the orbital speed against radial distance for three values of
the ratio ε/mc2 = {0.9, 1, 1.1}, with three corresponding colors (red, green, blue), the
radial scale is given in units of the Schwarzschild distance s, and the speed scale in
units of c: :

For the lowest value ε/mc2 = 0.9 (red color), we see that the orbital motion could exist
only in a limited radial range. The lower value is the Schwarzschild radius r = s, and
the upper value corresponds to the solution of the equation

1− (
mc2

ε
)2(1− s

r
) = 0 (25)
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A particle could oscillate between these two radii while executing its orbital motion. For
the other two values ε/mc2 = 1, 1.1, however, we see that the orbital motion has no
upper radial limit. We also see that the higher the energy, the higher is the maximum
of orbital speed, and the location of the maximum gets further away from the center.
The situation is not very different from the case of radial motion.

We can say, in general, that the motion of a massive particle (radial as well as orbital)
in the Schwarzschild field becomes very fast in the vicinity of the gravitational radius
s = 2GM/c2 and ceases, or gets reversed, as r → s.

5 Photon Motion

For a massless particle, like the photon, the formulae obtained in the preceding section
for the radial velocity and the radial acceleration become (with m = 0):

v = c
(

1− s

r

)
(26)

ar =
dv

dr
v =

sc2

r2

(
1− s

r

)
(27)

Notice that ar > 0 for all r > s (repulsion). The following figure depicts the radial
speed of the photon as a function of radial distance. The radial scale is given in units
of the Schwarzschild distance s, and the speed scale in units of c:

Hence we have the striking result: The speed of a radial photon would decrease as the
Schwarzschild surface is approached from outside. The acceleration is always positive for
r > s. An incoming photon decelerates, and an outgoing photon accelerates. Effectively,
this means that a radial photon is always repelled by the central source of a gravitational
field. This result concerning the motion of a radial photon could easily have been
deduced by requiring that the line element for a radial photon should vanish, as in
special relativity,(

1− s

r

)
c2dt2 −

(
1− s

r

)−1

dr2 = 0 ⇒ dr

dt
= ±c

(
1− s

r

)
(28)

This tells that the speed of a radial photon at a distance r is c(1 − s/r) as before.
Likewise, we may obtain the speed of an orbital photon, either from the orbital equation
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of a massive particle setting m = 0, or by equating the corresponding line element to
zero: (

1− s

r

)
c2dt2 − r2dω2 = 0 ⇒ r

dω

dt
= ±c

√
1− s

r
(29)

Hence the speed of an orbital photon at a distance r is given by c
√

1− s
r
. Notice that

the speed of an orbital photon at some radial distance is different from the speed of a
radial counterpart. Of course, we must distinguish these speeds of the photon from the
universal constant c which gives the speed at infinite distance from the gravitational
center.

The propagation of light at constant speed is one of the cornerstones of Einstein’s theory
of special relativity. In his theory, even the classical mechanics of particles is formulated
in such a way that a fundamental constant is introduced and identified with the special
relativistic speed of light.[3] Subsequently the quantum field theoretic description of
point particles is built such as the associated nature of propagation, in the massless
limit, is identical to that of light particles (or photons).[4]

Whereas Einstein has formulated his general theory of relativity in order to provide a
geometric description of gravitation, it is however natural to regard that construction
as a generalized framework for the propagation of light and other particles, and to
regard gravitation itself as a mere outcome of this viewpoint. In contrast to the metric
of special relativity, which implies the constancy of the speed of light, an arbitrary
spacetime metric would imply the variation of the speed of light in space (for instance,
in a local gravitational field) or in time (for instance, in cosmology).

6 The Singularity & the Timing Problem

Our preceding analysis in terms of particle speeds and accelerations gives us a nice
description of the relativistic motion of a particle in the field of a central Schwarzschild
source. However, we should now confront the singularity problem which is associated
with the breakdown of the metric when the radial distance approaches the Schwarzschild
surface, r → s. As a matter of fact, dealing with speeds and accelerations, this problem
did not show up in our preceding analysis at all. We shall face the problem when we try
to integrate the differential equation of speed in order to obtain the distance traversed
by the particle as a function of time, or the time taken to reach the surface at r = s.

Let us first consider the differential equation pertaining to an incoming radial photon’s
speed:

dr

dt
= −c

(
1− s

r

)
(30)

Solving the above equation for dt, and integrating from radial distance R down to a
radial distance R0, we obtain for the time taken by the photon:

R−R0

c
+
s

c
ln

(
R− s
R0 − s

)
(31)
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The first term, in the above expression, is the normal time taken by a photon which
travels at free speed c. The second term is the delay due to the deceleration of the
photon as it comes down closer to the central source. The problem lies with this latter
term when the approach gets closer to the Schwarzschild surface, R0 → s. Here the
singularity problem shows up, giving positive infinity. One would attempt to say that
the photon would never reach the singular surface at R0 = s, unless one waits for
infinite time!

On the other hand, the equation of radial speed associated with an incoming massive
test particle is

dr

dt
= −c

(
1− s

r

)√
1− (

mc2

ε
)2
(

1− s

r

)
(32)

This can also be integrated obtaining a much more complicated expression for the
time taken by the massive particle to go from radial distance R to radial distance R0.
However, we find that the singular term as R0 → s is exactly the same one obtained
above for the photon, namely,

s

c
ln

(
R− s
R0 − s

)
(33)

However, a moment’s thought would tell us that the photon, as well as any massive
test particle, should have their own Schwarzschild surfaces, and these surfaces should
be impenetrable just like the Schwarzschild surface associated with the central source.
Hence the length (R0−s) should be no less than σ, the Schwarzschild radius associated
with the test particle. Whereas the value of σ = 2Gm/c2 for a particle of mass m,
the value of σ associated with a photon would be the same using m = ε/c2, the mass
equivalent of a photon’s energy ε. The reader could verify that, with this prescription,
the value of (s/c) ln[(R− s)/σ] would always give a reasonable value for the delay time,
whatever reasonable values we give to R, s and σ. For example a compact Schwarzschild
source with mass of solar order would have s ∼ 3 × 103 meters. An MeV particle or
a photon would have a corresponding σ ∼ 3 × 10−57 meter. Consequently, if such a
particle or photon descends towards the Schwarzschild source from a distance R ∼ 109

meters, the above delay time would be of the order of ∼ 0.001 second rather than
infinity! The actual time for such a real photon to reach the Schwarzschild surface is
not practically different from (R− s)/c ∼ 3.3 seconds.

7 Discussion

Our elementary analysis of particle motion in the spherically symmetric gravitational
field of a Schwarzschild source gives remarkable insight regarding the relativistic theory
of gravitation. Whereas gravitation is thought to be always attractive, we have seen
that a Schwarzschild source would repel particles that come close to the Schwarzschild
surface. This together with our resolution to the timing problem associated with the
singularity at the Schwarzschild surface, makes us depict a fascinating picture regarding
the nature of Schwarzschild sources as impenetrable bubbles which reflect photons
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and other particles, and bounce from each other , if they get in contact. The
question is whether this picture can be tested.

As a matter of fact, the Schwarzschild metric which we have used in our present anal-
ysis can be regarded as describing the gravitational field of a very compact central
source, or an elementary particle, if such a thing does exist in reality. Consequently
the gravitational interactions of elementary particles may be regarded as being repul-
sive at distances approaching their Schwarzschild radii. However, we should remember
that elementary particles have other forces (electromagnetic and nuclear) that enter
the game. The forgoing picture for particles must be extended taking into account the
effects of other interactions.

However, for a description of celestial bodies like stars, we must consider metrics that
can describe extended spherical mass distributions. A stellar body, however dense
and compact, cannot be described by an ideal compact Schwarzschild source unless it
manages to contain within its Schwarzschild surface all the surrounding mass, without
a trace of gas outside! Is this possible? We shall return to the treatment of stellar
systems in other articles.

For the moment, supposing that the extreme case of a collapsed star, whose actual
sharp radius falls below its Schwarzschild radius, does in fact exist, then this would
be a place to test our picture regarding the repulsive nature of gravity near the
Schwarzschild surface . Would the tremendous activity in the nuclei of some galaxies
and other astrophysical systems be a manifestation of gravitational repulsion rather
than attraction?
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