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ABSTRACT

We show a group of equations that appear to represent target values for the
mass, radius, and number of elementary particles in the universe: the values of
an ’ideal particle’. Quanta and particles are not static entities; they change with
time. The angular momentum of the universe is continually increasing, and this
requires a dynamical response to conserve angular momentum. The collapse and
coalescence of quanta conserves angular momentum, resulting in the creation of
particles of matter. Matter is condensed space. The increase in particle energy
matches, surprisingly, the Hubble constant, and the increase in the gravitational
potential energy of particles matches the accretion rate of energy predicted by
this model. This gives a simple, universe-wide mechanism for the creation of
matter, and is the reason all elementary particles, of a kind, are identical. The
centripetal force of a particle of matter is shown to match the gravitational force;
they are the same entity. Gravity is the ongoing accretion of the quanta of space
by particles of matter.

Subject headings: absorption of space; accretion of quanta; creation of elemen-
tary particles; creation of matter; conservation of angular momentum; conserva-
tion of centripetal force; Hubble constant; hyperverse; model of gravity

1. Introduction

In [1], we showed that the universe can be modeled as an expanding, four dimensional
hypersphere, a ’hyperverse’, that is radially expanding at twice the speed of light, circumfer-
entially at the Hubble constant, and its surface, and whose three dimensional surface volume,
which is our universe, is composed of energy. Space is energy.
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We hypothesized in [2] that the hyperverse surface energy consists of a matrix of four
dimensional, spinning, vortices, self-similar to the whole. These vortices comprise both space
and matter. Their energy dynamics, when combined with the 2c radial expansion, produce
a model of time, complete with relativity.

Space is undergoing a geometric mean expansion [3], an expansion allowed by the cre-
ation of two levels of quanta, one being the quantum of our quantum mechanics. We find
that quanta are not static entities, but change with time and expansion.

This paper continues the development of the hyperverse model and geometric mean
expansion of space. The primary concepts of this paper are:

1. The universe conserves angular momentum and centripetal force by coalescing and
collapsing the quanta of space into particles of matter.

2. Because the angular momentum of the universe is continually increasing, the conser-
vation of angular momentum becomes something of a ’moving target’, making the
process of coalescence, and collapse, an ongoing process. The size, mass, and number
of elementary particles change with time and expansion; matter is dynamical.

3. This ongoing accretion of the quanta space, by particles of matter, is gravity.

We will make the following claims:

• The geometric mean expansion model produces a set of equations that appear to rep-
resent target values for the mass, radius, and quantity of an ideal elementary particle.

• From these equations, we can see that matter is not a static entity. We will show that
the mass and radius of elementary particles decrease with time, while the number of
particles increases.

• It appears the universe creates particles of matter to conserve angular momentum and
centripetal force.

• Although the small radius quantum conserves angular momentum, the small energy
quantum cannot conserve angular momentum in its native state. By coalescing a
specific number of the quanta of space into the volume of one SEQ, the universe can
conserve angular momentum; but this alone is not suffi cient.

• Centripetal force must also be conserved, and to do this, space must also collapse,
or shrink, to a particular radius. This combined coalescence and collapse of space
conserves both angular momentum and centripetal force, creating particles of matter.
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• The model gives a simple reason why all particles of matter, of a kind, are everywhere
identical in the universe. For example, all electrons are the same because they are
conserving the same value of centripetal force and angular momentum, and those values
are the initial values we calculated in the geometric mean paper, [3].

• The increasing angular momentum of the universe forces particles to continually accrete
the quanta of space, to shrink in size, and to grow in number. Matter is not static; it
is dynamic. For example, an electron today is not the same as an electron that existed
in the past or will exist in the future.

• Gravity is the ongoing accretion of energy, or absorption of the quanta of space, by
particles of matter.

• The rate of accretion of energy into particles is, surprisingly, the Hubble constant.

• We find that the centripetal force of the vortices of space matches the gravitational
force; they are the same force.

• Matter is made of the collapsed and coalesced quanta of space. The continually increas-
ing angular momentum of the hyperverse forces matter to continually accrete space,
and we experience this continuous accretion of space as gravity.

• Matter and gravity exist because space expands.

This paper is presented in two parts, Matter and Gravity.

Part I

Matter

2. The Ideal Particle

2.1. The Radius of the Small Energy Quantum

In [3], we showed that expansion produces two closely related quantum levels, one based
on the small energy, referred to here as the small energy quantum, or SEQ, and the other
on the small radius, the small radius quantum, or SRQ. Each quantum level has its own
associated energy and volume. The radius of the small energy quantum, RSEQ, is:
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RSEQ =
(
RH4l2p

) 1
3 = 6. 495 953 894 227 408 611 9× 10−15 m (1)

where lp is the Planck length.

The SEQ radius is very close to the Compton radii (the reduced Compton wavelength)
of elementary particles. The geometric mean average of the Compton radii for all twelve
quarks and leptons, of all three families, is approximately 1.156 56× 10−14 m, giving a ratio
of the two radii of 1.78.

2.2. The Geometric Mean Counterpart of the SEQ Radius is the Particle
Radius

Using the concept of the geometric mean expansion of space, we will define the geometric
mean counterpart of the SEQ radius as RGM_SEQ, calculated by dividing the square of the
initial length, [3], which is two times the Planck length, by the SEQ radius:

(Initial radius)2

SEQ radius
=

(
2
√

G~
c3

)2
(
RH4l2p

) 1
3

=

(
16l4p
RH

) 1
3

= 1. 608 150 331 744 687 220 7×10−55 m = RGM_SEQ

(2)

whereG is the Gravitational constant, and GM stands for geometric mean. This relation
was discussed briefly in [3].

From work that follows in this paper, this figure appears to be the correct choice for the
radius of an elementary particle. If the Compton radius was the correct radius, we would
have a nonsensical sequence in which the more massive a particle was, the smaller would be
its radius. As an extreme example, the Compton radius for the observable universe, would
be the small radius, Rs, as discussed in [3]:

~
Moc

=
~(

RHc2

4G

)
c

=
4l2p
RH

= Rs

where Mo is the mass of the observable universe, c is the speed of light, and ~ is the
reduced Planck constant.

A geometric mean radius gives the opposite, and logically appealing sequence, in which
a larger mass has a larger radius. There are several supporting lines of thought behind
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the choice of the geometric mean counterpart of the SEQ radius, RGM_SEQ, as the particle
radius, and we will look at a summary of some of them now, all of which will be addressed
in more detail later in this paper.

1. The mass to radius ratio of the observable universe is Mo

RH
=

RHc2

4G

RH
= c2

4G

The initial mass to radius ratio is Minitial

Rinitial
=

√
c~
G
2

2
√

G~
c3

= c2

4G

The ratio of the particle mass (to be derived below) to the radius, using the geometric

mean radius, produces the same value: Mparticle

RGM_SEQ
=

(
1
4G

~2
RH

) 1
3

(
(2lp)

4

RH

) 1
3

= c2

4G

Thus, using RGM_SEQ we get the conserved mass to radius ratio.

2. The GM_SEQ radius is the radius that produces the particle mass. In this restate-
ment of the above ratio, the GM_SEQ radius in the mass equation gives the correct particle
mass, discussed in detail shortly:

Mparticle =
c2
(
RGM_SEQ

)
4G

=
c2
(
16l4p
RH

) 1
3

4G
=

(
1

4G

~2

RH

) 1
3

3. In the light of the hyperverse model, a particle is a hollow, four dimensional spinning
hypersphere, a hypervortex, with its mass at the three dimensional surface. We can ask: At
what distance from the hypercenter of the particle will the expansion speed (escape velocity)
equal the speed of light? That is, what is this version of the Schwarzschild radius for a
particle?

The escape velocity is given by the following equation:

Vescape =

√
2GM

d
= c

Rearranging, we see that the distance is 2GM
c2
:

√
2GM

d
= c⇒ 2GM

d
= c2 ⇒ d =

2GM

c2
(3)

Inserting the particle mass, we get one half of the GM_SEQ radius:



—6 —

d =

2G

((
1
4G

~2
RH

) 1
3

)
c2

=

(
16l4p
RH

) 1
3

2
(4)

If we claimed the SEQ radius (the Compton radius of a particle) was the particle radius,
we’d find the Schwarzschild radius was one half the small radius, which is not correct:

d =
2G
(

~
cRH

)
c2

=
2l2p
RH

=
Rs

2
= 1. 990 579 889 740 185 209 9× 10−96 m (5)

The Schwarzschild radius of the observable hyperverse is one half the hyperverse radius
[1]. We have the same situation here, as the Schwarzschild radius of a particle is one-half
the particle radius.

2.3. The Number of Particles in the Observable Universe

To calculate the number of particles in the observable universe, we can take our value
for the mass of the universe, RHc

2

4G
= 8. 835 806 514 641 366 599 6 × 1052 kg, and divide it by

the mass of a proton, to get a rough estimate of the number of protons:

8. 835 806 514 641 366 599 6× 1052 kg

1.6726231× 10−27 kg
= 5. 282 604 619 439 589 588 1× 1079 (6)

If we attribute 3 quarks and one electron to the hydrogen atom, we can multiply by 4
and get an estimate of the number of elementary particles: about 2× 1080.

5. 282 604 619 439 589 588 1× 1079 × 4 = 2. 113 041 847 775 835 835 2× 1080

If we divide the mass of the universe by the arithmetic mean of the electron, up, and
down quarks, we get:

8. 835 806 514 641 366 599 6× 1052 kg

9. 216 959 800 818 213 513 1× 10−30 kg
= 9. 586 465 283 115 359 856 3× 1081

Including the neutrino in the arithmetic mean calculation gives us:

8. 835 806 514 641 366 599 6× 1052 kg

6. 912 720 831 078 142 952 6× 10−30 kg
= 1. 278 195 189 789 443 509 7× 1082
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The geometric mean of the electron, up, and down quark gives:

8. 835 806 514 641 366 599 6× 1052 kg

1. 543 555 939 191 495 571 9× 10−31 kg
= 5. 724 318 950 999 277 563 8× 1083

The geometric mean of the neutrino, electron, and up and down quarks gives:

8. 835 806 514 641 366 599 6× 1052 kg

5. 250 482 456 819 872 032 3× 10−30 kg
= 1. 682 856 116 044 060 53× 1082

We see these various ways of calculating the number of particles in the observable
universe gives us values in the vicinity of 1080 to 1083.

The large number of the universe, [3], is
(
RH
2lp

)2
, or about 6. 59 × 10121. Our rough

estimate of the number of particles in the observable universe is close to the square of the

cube root of the large number,
(
RH
2lp

) 4
3
:

(
RH

2lp

) 4
3

= 1. 631 670 937 848 98× 1081 (7)

We will assume that this number is the ’ideal particle number’for the observable universe

and refer to the value,
(
RH
2lp

) 4
3
, as the ’particle number’, or number of particles.

Notably, we can generate the particle number by dividing the hyperverse radius by the
GM_SEQ particle radius:

RH

RGM_SEQ
=

RH(
16l4p
RH

) 1
3

=

(
RH

2lp

) 4
3

(8)

The ideal particle number implies that matter is being continuously created; the number
of particles of matter is increasing with time.

2.4. The Particle Mass

If we divide the mass of the observable universe, by the number of particles, we get the
particle mass:
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RHc
2

4G(
RH
2lp

) 4
3

=

(
RHc

2

4G

)(
2lp
RH

) 4
3

=

(
1

4G

~2

RH

) 1
3

= 5. 415 182 785 216 18× 10−29 kg (9)

This is very close to the actual mass of particles. The geometric mean average mass
of all twelve elementary particles is approximately 3.041 49 × 10−29 kg. As with the radii,
the ratio of the mass of the ideal particle, to the geometric mean mass of the elementary
particles, is less than a factor of two, being, again, about 1.78.

The reduced Compton radius of our particle mass,
(
1
4G

~2
RH

) 1
3
, is RSEQ:

λbar =
~
mc

=
~((

1
4G

~2
RH

) 1
3

)
c

= 3
√
RH4lp = RSEQ (10)

The mass of a particle,
(
1
4G

~2
RH

) 1
3
, can be expressed in several ways. For example,

particle mass, stated in terms of the mass of the observable universe, is:

particle mass =
(
RHc

2

4G

)(
2lp
RH

) 4
3

(11)

where
(
RHc

2

4G

)
is the mass of the observable universe [1].

The particle mass can be stated using the geometric mean partner of the particle radius,(
16l4p
RH

) 1
3
, in the same form as that of the mass of the observable universe:

particle mass =
c2
(
RGM_SEQ

)
4G

=
c2
(
16l4p
RH

) 1
3

4G
(12)

Particle mass can be expressed in terms of the small energy quantum, giving a Planck
relationship structure:

particle mass =
(
~

cRH

)(
RH

2lp

) 2
3

=
~

c
(
RH4l2p

) 1
3

=
~

cRSEQ

(13)

Here is a summary of several ways to express particle mass:
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particle mass =
(

1

4G

~2

RH

) 1
3

=

(
RHc

2

4G

)(
2lp
RH

) 4
3

=
c~
RH

×
(
RH

2lp

) 2
3

=
c2
(
16l4p
RH

) 1
3

4G
=
~
c

1

RSEQ

(14)

2.5. The ’Ideal Particle’

The geometric mean expansion model produces quantities that are very close to what
we observe for particle radius and mass, and the number of particles. These quantities are
deeply related, and we will claim that their similarity to the actual particle radii and masses,
and the total number of particles, is not coincidental, and that our ’ideal particle’values are
the target values the expanding universe strives for. They are, in summary:

particle radius =
(

16l4p
RH

) 1
3

= RH

(
2lp
RH

) 4
3

(15)

particle mass =
(

1

4G

~2

RH

) 1
3

=

(
RHc

2

4G

)(
2lp
RH

) 4
3

(16)

particle number =
(
RH

2lp

) 4
3

(17)

These target values are postulated to vary from the real values due to the specific charge,
or spin, relationships within the coalesced component vortices [4].

3. Particles Contain a Quantity of Mass-Energy Equal to the Energy of the
Universe

The product of the ideal particle mass,
(
1
4G

~2
RH

) 1
3
, and the particle number,

(
RH
2lp

) 4
3
,

gives us the mass of the observable universe:

(
1

4G

~2

RH

) 1
3

×
(
RH

2lp

) 4
3

=
RHc

2

4G
(18)
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Of the
(
RH
2lp

)2
(≈ 6. 590 96 × 10121) units of small energy quanta in the observable

universe, only
(
RH
2lp

) 4
3
or 1. 631 67 × 1081 have assignable mass. This is interesting, as we

previously defined the energy of the universe as that of the atoms of space comprising the
universe; the energy quanta are defined by their component energy. It is as though the
creation of matter produces a doubling of the mass-energy of the universe, an observation
that can be explained by the creation of an equal, but negative, energy of gravity; in other
words, the creation of matter produces gravity.

4. Successes and Failures in Conserving Angular Momentum and Centripetal
Force

4.1. Angular Momentum

Spin angular momentum, the intrinsic momentum of a spinning object (as compared to
orbital angular momentum), is what we will be discussing. The term "L" will represent spin
angular momentum, and we will refer to it, simply, as angular momentum.

The equation for angular momentum is L = Iω, where I is the moment of inertia, and
ω, omega, is the angular velocity. The moment of inertia is usually expressed as I = mr2k,
where m is the mass of the object, r is the radius, and k is the moment of inertia constant,
which relates to the object’s shape, indicating, roughly, the mass distribution compared to
the radius. Omega is defined as the tangential velocity per unit radius, or ω = vT

r
. Combining

the terms gives us:

L = Iω = mrvk (19)

The ’k’value is defined as one for normal, uncompressed space. We will discuss the
reason for this definition shortly.

The magnitude of the tangential velocity, vT , is a constant,
√

2c [2].
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4.2. Are the Quanta Being Created to Counter a Runaway Angular
Momentum?

In [3], the initial angular momentum, Linitial, at the time expansion, started was iden-
tified as

√
2~:

Linitial = mrvT =


√

c~
G

2


initial mass

(2lp)
initial radius

(√
2c

)
tangential velocity

=
√

2~ (20)

where vT is the tangential velocity of the vortex, m is its mass and r is its radius.

The angular momentum of the observable universe, Lo is:

Lo = mrvT =

(
RHc

2

4G

)
(RH)

(√
2c
)

=
√

2~
(
RH

2lp

)2
(21)

This is not the initial value; the angular momentum of the observable universe is in-
creasing over time. Using the "now and then" approach of doubling we used in [3], we find
that the angular momentum of the observable universe increases by four times with each
doubling of the hyperverse radius:

angular momentum now
angular momentum then

=

(
RHc

2

4G

)
(RH)

(√
2c
)(

RH
2
c2

4G

)(
RH
2

) (√
2c
) = 4 (22)

The four-fold increase in angular momentum of the observable universe is a product of
the two-fold increase in the mass, and the two-fold increase in the radius, with each doubling
[3]. We might expect angular momentum to be conserved, but it is rapidly increasing.

Looking at the geometric mean partner of the large angular momentum, we find:

Ls =
L2i
Lo

=

(√
2~
)2

√
2~
(
RH
2lp

)2 =
√

2~
(

2lp
RH

)2
(23)

This value of the ’small’angular momentum, Ls, matches the angular momentum de-
rived from using the two quantum quantities, the small energy, Es, and the small radius,
Rs.
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LGM = mvr =

(
~

cRH

)(
4l2p
RH

)(√
2c
)

=
√

2~
(

2lp
RH

)2
(24)

The small energy, defined as c~
RH
, is the geometric mean counterpart of the energy of

the universe, while the small radius, defined as
4l2p
RH
, is the geometric mean counterpart of

the hyperverse radius [3]. Equation (24) suggests that expansion’s production of the two
quantum levels is a means of conserving angular momentum.

Of additional interest is that if multiply the number of SEQ within the observable
universe,

mass of universe
mass of SEQ

=
RHc

4

4G
c~
RH

=

(
RH

2lp

)2
= number of SEQ (25)

by the angular momentum of LGM , we get the initial angular momentum,
√

2~:

(
RH

2lp

)2
×
√

2~
(

2lp
RH

)2
=
√

2~ (26)

We will see next that, at the SRQ level, the total angular momentum is also the con-
served value,

√
2~. This and the observation that the product of LGM , and the number of

SEQ, also equals
√

2~, makes one wonder if this is an actual attempt to conserve angular
momentum at the SEQ level. We see in equation (33), below, that the combination of the
small energy and small radius also conserves centripetal force between themselves. These
observations lead us to wonder if the small energy and small radius comprise a "false quan-
tum". Despite the deep connection between the small energy and small radius, they have
distinct identities[3].

4.3. The Angular Momentum of the SRQ is Conserved

The small radius, Rs, has an associated energy,
(
RHc

2

4G

)(
2lp
RH

)6
, called the small radius

quantum, or SRQ, whose energy density matches that of both an SEQ and the universe.
The angular momentum of one small radius quantum is:

LSRQ =

((
RHc

2

4G

)(
2lp
RH

)6)( 4l2p
RH

)(√
2c
)

=
√

2~
(

2lp
RH

)6
(27)
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There are
(
RH
2lp

)6
units of small radius quanta within the observable universe. Multi-

plying the angular momentum of one SRQ, by their total number, gives us
√

2~:

total LSRQ =
√

2~
(

2lp
RH

)6
×
(
RH

2lp

)6
=
√

2~ (28)

The sum of the SRQ angular momenta matches the initial value and thus, at the level of the
small radius quantum, angular momentum is conserved.

4.4. The Angular Momentum of the SEQ Presents a Problem

The angular momentum of the small energy quantum is:

for one SEQ: LSEQ =

(
~

cRH

)((
RH4l2p

) 1
3

)(√
2c
)

=
√

2~
(

2lp
RH

) 2
3

(29)

There are
(
RH
2lp

)2
units of small energy quanta within the observable universe, and

therefore the sum of the angular momenta of the SEQ is
√

2~
(
RH
2lp

) 4
3
:

total LSEQ =
√

2~
(

2lp
RH

) 2
3

×
(
RH

2lp

)2
=
√

2~
(
RH

2lp

) 4
3

(30)

This value is greater than
√

2~ but less than that of the observable universe, which is
√

2~
(
RH
2lp

)2
. Therefore the SEQ cannot obtain, in its native state, the conserved value of

angular momentum.

Unlike the SRQ, which conserves angular momentum within its own quantum level, the
SEQ, in its native state, cannot conserve angular momentum within its level.

4.5. Centripetal Force and the Mass to Radius Ratio are Conserved

Centripetal force, FC , is the product of mass and centripetal acceleration. For the initial
condition, the centripetal force was c4

2G
:

Initial Condition: FC = minitial ×
v2T

rinitial
=


√

c~
G

2

 2c2

2
√

G~
c3

 =
c4

2G
(31)



—14 —

We get the same for the observable universe:

Observable Universe: FC = Mo ×
v2T
RH

=

(
RHc

2

4G

)(
2c2

RH

)
=

c4

2G
(32)

and for the combined Es and Rs quanta:

GM counterparts: Es and Rs quanta: FC_GM = Ms ×
v2T
Rs

=

(
~

cRH

)2c2

4l2p
RH

 =
c4

2G
(33)

and for the ideal particle:

Particle: FC = Mparticle ×
v2T

Rparticle

=

((
1

4G

~2

RH

) 1
3

) 2c2(
16l4p
RH

) 1
3

 =
c4

2G
(34)

The tangential velocity is constant, at
√

2c. With centripetal force equal to c4

2G
, the

ratio of mass to radius is:

FC = m
v2T
r

= 2c2
m

r
(35)

FC
2c2

=
m

r
⇒

c4

2G

2c2
=

c2

4G
(36)

Thus the mass to radius ratio is:

m

r
=

c2

4G
(37)

This relationship is identical to the mass of the observable universe equation. Because
the centripetal force is conserved in the above entities, they all have a mass to radius ratio
of c2

4G
:

c2

4G
=

Mi

Ri

=
Ms

Rs

=
Mo

RH

=
Mparticle

Rparticle

(38)
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4.6. The SEQ is a Problem Again

However, for one SEQ, the centripetal force is not c2

4G
:

One SEQ: FC = m
v2T
r

=

(
~

cRH

) 2c2(
RH4l2p

) 1
3

 =
c4

2G

(
2lp
RH

) 4
3

(39)

Multiplying that value, c4

2G

(
2lp
RH

) 4
3
, by

(
RH
2lp

)2
, the number of SEQ in the observable

universe, does not conserve centripetal force either:

Total for all SEQ: FC =
c4

2G

(
2lp
RH

) 4
3

×
(
RH

2lp

)2
=

c4

2G

(
RH

2lp

) 2
3

(40)

Thus native SEQ conserve neither angular momentum nor centripetal force.

4.7. Summarizing Angular Momentum and Centripetal Force Values

Table 1 gives a summary of the angular momentum and centripetal force values we have
calculated thus far. The initial state gives us the values we claim the universe wants to
conserve.

L FC
Initial state

√
2~ c4

2G

Observable
√

2~
(
RH
2lp

)2
c4

2G

GM counterpart
√

2~
(
2lp
RH

)2
c4

2G

SRQ single
√

2~
(
2lp
RH

)6
c4

2G

(
2lp
RH

)4
SRQ all

√
2~ c4

2G

(
RH
2lp

)2
SEQ single

√
2~
(
2lp
RH

) 2
3 c4

2G

(
2lp
RH

) 4
3

SEQ all
√

2~
(
RH
2lp

) 4
3 c4

2G

(
RH
2lp

) 2
3

Table 1. Summary of angular momentum and centripetal force values of various aspects of
the universe

In Table 1, we see that the observable universe is conserving centripetal force, and
appears to be attempting to conserve angular momentum, despite the rapid increase in the
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angular momentum. The quantum levels, between each other, as a unit (the GM counterpart
row), conserve centripetal force, and as we argued above, that the two quantum levels seem
to be making an attempt to conserve angular momentum against the observable universe
(multiplying the number of SEQ by LGM).

The SRQ conserves the initial angular momentum, but not centripetal force, and the
SEQ fails at everything. Here is where matter comes in. Let us look at what we think the
universe is doing to conserve angular momentum and centripetal force.

5. Creating Particles of Matter Conserves Angular Momentum and
Centripetal Force

5.1. Elementary Particles Conserve Angular Momentum and Centripetal
Force

Elementary particles have intrinsic spin. The equation of spin for particles is:

S = ~
√
s (s+ 1) = L (41)

where S is the spin angular momentum and s is the spin quantum number. In these
papers, we use the term ’L’for the spin angular momentum.

For a spin-1 particle, s = 1, we get L = ~
√

1 (1 + 1) =
√

2~, our initial, and conserved,
angular momentum. An electron, for example, is a spin-1/2 particle, and its angular mo-

mentum would be L = ~
√

1
2

(
1
2

+ 1
)

=
√
3
2
~. Resolving the creation of different spin is not

currently part of this model.

We can calculate the centripetal force of the ideal particle:

FC = Mparticle
v2T

Rparticle

=

( 1

4G

~2

RH

) 1
3 2c2(

16l4p
RH

) 1
3

 =
c4

2G
(42)

We get the initial, conserved value. We could add this row to Table 1:

L FC
elementary particles

√
2~ c4

2G
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Particles conserve the initial values. We will make the claim that the universe creates
particles of matter to conserve angular momentum and centripetal force.

5.2. Coalescing and Shrinking SEQ Conserves both L and FC, Creating
Particles of Matter

The angular momentum of one SEQ is
√

2~
(
2lp
RH

) 2
3
. If

(
RH
2lp

) 2
3
SEQ were packed, or

combined, into the space of one SEQ, the conserved angular momentum of
√

2~ would be

achieved. That is, multiplying the angular momentum of one SEQ,
√

2~
(
2lp
RH

) 2
3
, by

(
RH
2lp

) 2
3
,

produces the conserved quantity,
√

2~:

√
2~
(

2lp
RH

) 2
3

×
(
RH

2lp

) 2
3

=
√

2~ (43)

Or we can express this as:

L =

 (
~

cRH

)
mass of one SEQ

 (
RH

2lp

) 2
3

number of SEQ packed into volume of one SEQ


((RH4l2p

) 1
3

SEQ radius

)( √
2c

tangential velocity

)
=
√

2~

(44)

where the total mass is the mass of one SEQ, times number of SEQ compressed into
the SEQ volume.

This action conserves angular momentum, but not the centripetal force; it would still
be short of the conserved value, c4

2G
, as shown here:

FC = m
v2

r
=

((
1

4G

~2

RH

) 1
3

) 2c2(
RH4l2p

) 1
3

 =
c4

2G

(
2lp
RH

) 2
3

(45)

But by also shrinking the SEQ radius to the GM_SEQ radius, the radius we have
claimed is the true particle radius, we conserve both angular momentum and centripetal

force using
(
RH
2lp

) 2
3
SEQ:
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FC = m
v2T
r

=

((
~

cRH

)
×
(
RH

2lp

) 2
3

)
2c2(
16l4p
RH

) 1
3

=
c4

2G
(46)

Looking at this differently, for one SEQ, compressed to the radius of the geometric mean

of the SEQ radius, we have a mass to radius ratio of c2

4G

(
2lp
RH

) 2
3
:

MSEQ

RGM_SEQ
=

~
cRH(
16l4p
RH

) 1
3

=
c2

4G

(
2lp
RH

) 2
3

(47)

Multiplying this ratio, by the number of SEQ within a particle,
(
RH
2lp

) 2
3
, gives us the

conserved mass to radius ratio of c2

4G
.

particle mass to radius =
c2

4G

(
2lp
RH

) 2
3

×
(
RH

2lp

) 2
3

=
c2

4G
(48)

This matches our value for the ratio of the mass of a particle to the GM_SEQ radius:

particle mass
particle radius

=

(
1
4G

~2
RH

) 1
3

(
16l4p
RH

) 1
3

=
c2

4G
(49)

For the seemingly problematic SEQ, the compression of
(
RH
2lp

) 2
3
SEQ into a volume

with the RGM_SEQ radius,
(
16l4p
RH

) 1
3
, allows the universe to conserve both angular momentum

and centripetal force at the SEQ level. This compression and coalescence of small energy
quanta creates particles of matter. Matter is concentrated space, formed to conserve angular
momentum and centripetal force.

This leads to another issue we need to discuss. Compressing the radius from the SEQ
radius to the particle radius appears to result in a decrease in the angular momentum, as
such:

L =

((
~

cRH

)((
RH

2lp

) 2
3

))((
16l4p
RH

) 1
3

)(√
2c
)

=
√

2~
(

2lp
RH

) 2
3

(50)
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Recall that the general equation of angular momentum is L = mrvk, where k is the
moment of inertia constant. The constant ’k’ is related to the distribution of the mass
relative to the radius. The solution to the apparent decrease in angular momentum lies with
the change in the ’k’value. We will address this shortly.

5.3. The Large Number Cube

A visual aid, Figure 1, might help. The large number of the universe is
(
RH
2lp

)2
. If we

picture a three dimensional cube with sides being the length of the cube root of the large

number,
(
RH
2lp

) 2
3
, about 4.039 × 1040, then the total number of the cube would be obtained

by multiplying the three sides, which is the large number,
(
RH
2lp

)2
, 6.591×10121. The number

of particles equals the area at the very bottom, in blue, which is the product of two sides,(
RH
2lp

) 2
3 ×

(
RH
2lp

) 2
3

=
(
RH
2lp

) 4
3
.

A particle is made by collapsing the column above each point on the bottom. For
example, the number of SEQ absorbed per particle is represented by the height of the brown

column,
(
RH
2lp

) 2
3
, consisting of 4.039×1040 small energy quanta, or SEQ, shown by the arrow.

Figure 1. The large number cube. The length of each side of the cube is equal to the cube
root of the large number. The square at the very bottom, shown in blue, represents the



—20 —

number of particles in the observable universe. The column at the front left corner is
intended to help show how many SEQ are within each particle.

5.4. Condensing
(
RH
2lp

) 2
3
into an SEQ Volume, and Shrinking the Radius to the

Particle Radius, Also Makes the SRQ Behave

The centripetal force of a small radius quantum is c4

2G

(
2lp
RH

)4
:

One SRQ: FC = m
v2T
r

=

 RHc
2

4G(
RH
2lp

)6

2c2

4l2p
RH

 =
c4

2G

(
2lp
RH

)4
(51)

The small radius, the radius of the SRQ, is actually smaller than the particle radius, to
start with.

Radius of the SRQ:
4l2p
RH

=
(3. 232 1× 10−35 m)

2

2.62397216× 1026 m
= 3. 981 166 633 261 840 704 9× 10−96 m

(52)

The particle radius is

Particle Radius:
(

16l4p
RH

) 1
3

= 1. 608 150 331 744 687 220 7× 10−55 m (53)

Thus, if one SRQ expanded its radius to the particle radius, its centripetal force would

lower by a factor of
(
2lp
RH

) 2
3
to:

FC = m
v2T
r

=

 RHc
2

4G(
RH
2lp

)6

 2c2(

16l4p
RH

) 1
3

 =
c4

2G

(
2lp
RH

) 14
3

=
c4

2G

(
2lp
RH

)4(
2lp
RH

) 2
3

(54)

There are
(
RH
2lp

)4
SRQ per SEQ, so if we packed

(
RH
2lp

) 2
3
SEQ into the particle, the

resulting centripetal force for the SRQ would be c4

2G
, thus conserving FC as well:

c4

2G

(
2lp
RH

)4(
2lp
RH

) 2
3

×
(
RH

2lp

)4
×
(
RH

2lp

) 2
3

=
c4

2G
(55)
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SEQ are composed of SRQ, with
(
RH
2lp

)4
SRQ in the volume of one SEQ. Coalescing(

RH
2lp

) 2
3
SEQ into the volume of one SEQ means we have

(
RH
2lp

)4
×
(
RH
2lp

) 2
3
SRQ in the volume

of one SEQ. The angular momentum of this many SRQ is the conserved value:

(RH

2lp

)4
×
(
RH

2lp

) 2
3

×
RHc

2

4G(
RH
2lp

)6
((RH4l2p

) 1
3

)(√
2c
)

=
√

2~ (56)

As with the SEQ, collapsing the radius from the SEQ radius to the particle radius,

causes the angular momentum of the SRQ to appears to drop to
√

2~
(
2lp
RH

) 2
3
:(RH

2lp

)4
×
(
RH

2lp

) 2
3

×
RHc

2

4G(
RH
2lp

)6
((16l4p

RH

) 1
3

)(√
2c
)

=
√

2~
(

2lp
RH

) 2
3

(57)

Thus, the coalescing of
(
RH
2lp

) 2
3
SEQ into the volume of one SEQ conserves angular

momentum for both the SEQ and the SRQ, and decreasing the SEQ radius to the particle
radius allows conservation of centripetal force, but we have an apparent decrease in the
angular momentum. Let us now examine the moment of inertia constant, ’k’, and how it is
altered by the collapse of space.

5.5. Why k=1 for the Hyperverse

We have seen that if
(
RH
2lp

) 2
3
SEQ are compressed into the volume of one SEQ, the

angular momentum is conserved at
√

2~. But when we shrink the radius from the SEQ
radius to the particle radius, our equation, L = mrv gives us a shrinkage in the angular

momentum to
√

2~
(
2lp
RH

) 2
3
. We get the exact same result when we look at the SRQ, where

we go from the conserved state to
√

2~
(
2lp
RH

) 2
3
. Both the SEQ and SRQ are off by the same

factor,
(
2lp
RH

) 2
3
. Notice, if we multiplied the resultant angular momentum by

(
RH
2lp

) 2
3
, we get

our conserved value.

The solution is in the general equation of angular momentum, which is L = mrvk. The
term, ’k’, is the moment of inertia constant and it is related to the distribution of mass in
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relation to the axis of rotation. For example, the moment of inertia, I, for a spinning, hollow
3D sphere is 2

3
mr2. It is not mr2 because the mass is not all the same distance from the axis

of rotation. Some of the mass is at or near the poles, for example, while some of the mass is
at the equator.

We have set the ’k’value of the hyperverse at k = 1. And we claim the hyperverse,
which is hollow, has spin. If the hyperverse turned on an axis, that is, it had a north and
south pole, like a hollow 3D rotating sphere, then we’d expect it to have a moment of inertia
constant less than one, so that the equation of angular momentum, L = Iω, would produce
a lower angular momentum than we are currently using:

L = Iω ⇒
(
kmr2

) (vT
r

)
= kmrvT (58)

⇒ kmrvT < mrvT . (59)

Our model of the hyperverse is one of a surface consisting of individual atoms of space,
or quanta, each with its own spin. The hyperverse, according to this model, is not a four
dimensional sphere rotating on an axis, but one whose surface is formed by individual spin-
ning atoms of space. There is no axis of rotation for the whole. All points on the surface are
at an equal distance from the center, which is the only reference point of spin. Thus, k = 1

for the hyperverse.

5.6. The Particle Radius is the Geometric Mean of the SEQ Radius and the
SRQ Radius

Coalescing
(
RH
2lp

) 2
3
units of SEQ into the volume of one SEQ conserves angular momen-

tum for both the SEQ and SRQ, but does not conserve centripetal force. Collapsing the
SEQ radius to the particle radius allows conservation of centripetal force, but appears to

lose the conserved angular momentum, its value dropping to
√

2~
(
2lp
RH

) 2
3
for both quantum

levels.

The ratio of the SEQ radius to the particle radius is
(
RH
2lp

) 2
3
:
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SEQ radius
particle radius

=

(
RH4l2p

) 1
3(

16l4p
RH

) 1
3

=

(
RH

2lp

) 2
3

(60)

The ratio of the particle radius to the SRQ radius is also
(
RH
2lp

) 2
3
:

particle radius
SRQ radius

=

(
16l4p
RH

) 1
3

4l2p
RH

=

(
RH

2lp

) 2
3

(61)

Since the two ratios are equal, we can rearrange them as such:

particle radius
SRQ radius

=
SEQ radius
particle radius

⇒ (SRQ radius) (SEQ radius) = (particle radius)2 (62)

The geometric mean of the SEQ radius and the SRQ radius happens to be the particle
radius:

((
RH4l2p

) 1
3

)
(SEQ radius)

×
(

4l2p
RH

)
(SRQ radius)

=

((
16l4p
RH

) 1
3

)2
(particle radius)2

(63)

We have previously defined the particle radius as the geometric mean counterpart to
the SEQ radius, against the initial radius:

RSEQ ×RGM_SEQ = R2initial (64)

So the particle radius is not just the geometric mean partner of the SEQ radius, the
particle radius is also the geometric mean of the SEQ and SRQ radii. The particle radius is
a very special value in the cosmos.

5.7. Compression and Expansion Change the k value

Let us picture the expansion of an SRQ up to the size of a particle, as in Figure 2. The
large circle represents a particle, and the smaller circle, an SRQ. The SRQ must expand to
fill the volume of the particle. The SRQ mass, which in the small radius quantum, is at a
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distance equal to the SRQ radius from the center of the SRQ, finds itself at a much greater
distance from the center after expanding to the size on a particle. The new location of the

SRQ mass is
(
RH
2lp

) 2
3
times the small radius, from the center. The mass distribution, relative

to the initial, native radius, is
(
RH
2lp

) 2
3
times the initial distance. The ’k’value, the moment

of inertia constant, in this case, is outside the initial radius, making k =
(
RH
2lp

) 2
3
.

Particle radius

SRQ

New Location of Mass

SRQ Native Radius

Figure 2. The SRQ Expanding to the Particle Radius. The bottom circle represents an
SRQ. The larger circle represents a particle. With the SRQ expanding to fit the particle
volume, we see that the SRQ mass, which lies upon its circumference, must move away

from the initial radius. The factor of difference is
(
RH
2lp

) 2
3
, thus increasing the ’k’factor by

the amount needed to conserve angular momentum.

Looking at the situation for the SEQ, shrinking its radius to the particle radius, Figure

3, we find again that the mass can be viewed as existing at a distance
(
RH
2lp

) 2
3
outside the

radius.
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SEQ radius

New Location of Mass

Particle Radius

Particle

SEQ

Figure 3. The SEQ Shrinking to the Particle Radius. The upper, large, crcle represents the

SEQ. Shrinkage places its mass at a distance of
(
RH
2lp

) 2
3
times the shrunken radius, which is

the particle radius.

With shrinkage of a small energy quantum, the radius shrinks relative to the mass;
mass stays constant. With expansion of the SRQ, mass expands relative to the radius, and

the radius is constant. In each case, the mass lies at a distance
(
RH
2lp

) 2
3
times the radius,

from the center, so that k =
(
RH
2lp

) 2
3
, precisely countering the shrinkage effects. The angular

momentum remains at the conserved, initial quantity of
√

2~.

Using the equation of angular momentum, with k being equal to
(
RH
2lp

) 2
3
, gives us the

conserved angular momentum.

L = mrvk =

((
1

4G

~2

RH

) 1
3

)((
16l4p
RH

) 1
3

)(√
2c
)((RH

2lp

) 2
3

)
=
√

2~ (65)

We see that the universe is able to produce the conserved angular momentum and
centripetal force by creating particles of matter.
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6. The Regulation of Particle Size, or Why All Particles of a Kind are
Identical

That the universe creates particles of matter to conserve angular momentum and cen-
tripetal force, gives a simple, universe-wide, self-regulating mechanism for determining par-
ticle number and size. If any more or less quanta of space collapsed to form a particle,
then the angular momentum and centripetal force of the particle would vary from the target
values; all particles collapse to the point that their angular momentum and centripetal force
matches the initial, conserved values.

All particles of a kind, everywhere, are identical, and this model tells us why.

This concept raises many interesting questions, such as: How does the universe know to
create a particle? Where would a particle form? How is the information transferred within
the universe?

7. Comparing Real Particles to the Idealized Particle

Real elementary particles, like the electron, and up and down quarks, have differing radii
and masses from our idealized particle. The hyperverse model suggests a possible internal
structure of elementary particles, discussed at a conceptual level in [4]. The differences
between particles, their charges, masses and radii, are likely related to the interaction of the
component quanta, whose spins are presumably fixed in orientation with collapse. The spin
of adjacent quanta, within a particle, vary from particle type to particle type, resulting in
varying amounts of attraction or repulsion between the quanta of a particle, changing the
particle density and size.

Just as the ideal particle radius is the geometric mean partner of the SEQ radius,
the radii of real particles would be the geometric mean partner of the reduced Compton
wavelength of the real particles. For example, the true radius of the electron would be:

Re =
4l2p
~
mec

= 4
G

c2
me = 2. 705 218 242 135 866 147× 10−57 m (66)

The m
r
ratio for the electron is

electron mass
electron radius

=
9.1093897× 10−31 kg

2. 705 218 242 135 866 147× 10−57 m
=

3. 367 340 038 638 735 633 4× 1026

m
kg

(67)



—27 —

which matches the particle mass/radius ratio:

5. 415 182 785 216 176 701 4× 10−29 kg

1. 608 150 331 744 687 220 7× 10−55 m
=

3. 367 336 173 939 179 125 7× 1026

m
kg

and the ratio of the mass of the observable universe to the hyperverse radius:

8. 835 806 514 641 366 599 6× 1052 kg

2.62397216× 1026 m
=

3. 367 340 038 638 735 633 4× 1026

m
kg

7.1. Testing the Radius and Mass Relationship using the Koide Formula

As a test of the validity of the geometric mean of the Compton wavelength of the
elementary particles as a valid radius of particles, we can run the proposed radius and mass
relation through the Koide equation. Koide [5] showed an amazing relationship between the
masses of the electron, muon and tau electron as:

(me) + (mµ) + (mτ ) = 2/3
(√

me +
√
mµ +

√
mτ

)2
(68)

Substituting our geometric mean derived radii for these particles gives us:

(
4
G

c2
me

)
+

(
4
G

c2
mµ

)
+

(
4
G

c2
mτ

)
= 2/3

(√
4
G

c2
me +

√
4
G

c2
mµ +

√
4
G

c2
mτ

)2
(69)

This reduces to (me +mµ +mτ ) = 2
3

(√
me +

√
mµ +

√
mτ

)2
, matching the Koide for-

mula. Any variation from a constant multiplication factor for the radii would violate the
equivalency, supporting the case for the particle radii to be the geometric means of their
Compton radii.

Interestingly, we can flip it so that we insert the mass values instead of the radii. Rear-
ranging our equation of the particle radius to display the mass,

me =
c2

4G
Re (70)

and inserting this into the Koide formula gives:
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(
c2

4G
Re

)
+

(
c2

4G
Rµ

)
+

(
c2

4G
Rτ

)
=

2

3

(√
c2

4G
Re +

√
c2

4G
Rµ +

√
c2

4G
Rτ

)2
(71)

which reduces to (Re +Rτ +Rµ) = 2
3

(√
Re +

√
Rµ +

√
Rτ

)2
. Testing, using the calcu-

lated radii, confirms the identity.

Part II

Gravity

8. Particles and Quanta Are Not Static Entities. The Effects of Doubling the
Size of the Hyperverse Radius on Particle Dimensions

In Part One, equations 15-17, we gave the parameters of the ideal particle, repeated
here:

particle radius =

(
16l4p
RH

) 1
3

=
RH(
RH
2lp

) 4
3

particle mass =

(
1

4G

~2

RH

) 1
3

=

(
RHc

2

4G

)
(
RH
2lp

) 4
3

particle number =

(
RH

2lp

) 4
3

They are all functions of the radius of the hyperverse, RH , meaning the values change
with expansion. Let us use the ’now and then’approach, where ’now’refers to the current
condition, and ’then’refers to the time when the hyperverse radius was one-half the current
size, or RH

2
, to see the effects of doubling.

The mass of particles decreases with a doubling:
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particle mass now
particle mass then

=

(
1
4G

~2
RH

) 1
3

(
1
4G

~2
RH
2

) 1
3

=

(
1

2

) 1
3

=
1

2
2
2
3 = 0.793 700 525 984 100 (72)

The radius of particles also decreases with a doubling, and at the same rate as mass:

particle radius now
particle radius then

=

(
(2lp)

4

RH

) 1
3

(
(2lp)

4

RH
2

) 1
3

(
1

2

) 1
3

=
1

2
2
2
3 = 0.793 700 525 984 100 (73)

The number of particles increases with a doubling of the hyperverse radius:

number of particles now
number of particles then

=

(
RH
2lp

) 4
3

(
RH
2

2lp

) 4
3

= 2
3
√

2 = 2. 519 842 099 789 75 (74)

In the geometric mean paper, [3], we gave the effects of doubling on the quanta. Table
2, below, is a combination of the results from Table 6 of that paper, showing quanta, with
our particle doubling results. The quanta and particles all change with time.

observable SRQ SEQ Particle

Radius RH = 2x ↑ RSRQ = 1
2
x ↓ RSEQ = 3

√
2x ↑ Rparticle =

(
1
2

) 1
3 x ↓

Volume per unit Vo = 8x ↑ VSRQ = 1
8
x ↓ VSEQ = 2x ↑ Vparticle = 1

2
x ↓

Energy per unit Eo = 2x ↑ ESRQ = 1
32
x ↓ ESEQ = 1

2
x ↓

(
1
2

) 1
3 x ≈ 0.7937x ↓

Number of units 1 64x ↑ 4x ↑ 2 3
√

2x ↑
Total E = E x # 2x ↑ 2x ↑ 2x ↑ 2x ↑
Energy Density 1

4
x ↓ 1

4
x ↓ 1

4
x ↓ 2

2
3x ↑

Angular Momentum 4x ↑ one all
1
64
↓ 1

one all(
1
4

) 1
3 ↓ 2 3

√
2 ↑

one all
1 2 3

√
2 ↑

Table 2. Effects of doubling on aspects of the hyperverse. This table is a repeat of Table 6
from [3], with the particle doubling and angular momentum information added.
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9. The Fractional Increase in Particle Energy Equals the Hubble Constant

From [1]. the Hubble constant, H, can be expressed as:

H =
∆Eo
Eo

(75)

where Eo is the energy of the observable universe, and ∆Eo is the change in energy of
the observable universe. Thus, the Hubble constant is a measure of the change of energy in
the universe. From [3], delta energy of the observable universe, ∆Eo is equal to c5

2G
.

We can calculate delta E for a particle, by dividing the rate of change of energy of the
observable universe, ∆Eo, by the number of particles. We find that about 1.1× 10−29 joules
of energy are added to a particle each second:

∆Eo
number of particles

=
c5

2G(
RH
2lp

) 4
3

= ∆Eparticle = 1. 112 106 810 712 833 910 4× 10−29
m2

s3
kg

(76)

To find the fractional increase of energy of a particle, we can take the ratio of ∆Eparticle
to Eparticle:

∆Eparticle
Eparticle

=

c5

2G(
RH
2lp

) 4
3

c~
RH
×
(
RH
2lp

) 2
3

=
2c

RH

= 2. 285 027 734 440 597 113 7× 10−18 m/ s/m (77)

The amazing result is the Hubble constant. The fractional, or at each point, increase
in the energy of a particle is the same as for the observable universe. Particles and the
observable universe have identical growth in their energies. This may seem odd at first for a
couple of reasons. The standard use of the Hubble constant is a measure of the rate of the
separation of galaxies. But we saw in [1], that the Hubble constant is actually a measure
of the addition of energy to the universe. Secondly, the idea that the rate of growth of the
observable universe, the Hubble constant, if scaled down to the size of a particle, gives us
the growth rate of particles of matter, is quite a surprising realization.
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10. Particles Continuously Accrete the Quanta of Space

As discussed in the first part of this paper, particles are not static over time; they are
accreting quanta with expansion, apparently doing so to conserve angular momentum and
centripetal force.

Table 2 shows us that particle energy decreases with time. But particles are composed
of quanta, and the energy of quanta shrinks with time, at a FASTER rate, than does a
particle. Plus, the angular momentum of the observable universe continually increases.

The concept of frame advances was developed in [2] and [3], the idea being that space
is radially advancing in increments of one hypervortex radius. Each radial advancement of
a vortex radius is called a ’frame advance’.

The number of SEQ within one particle is
(
RH
2lp

) 2
3
. There have been

(
RH
2lp

)2
frame

advances since expansion started. Dividing the number of SEQ within a particle, by the
number of frame advances, gives us the number of SEQ absorbed per frame advance per
particle:

(
RH
2lp

) 2
3(

RH
2lp

)2 =

(
2lp
RH

) 4
3

= 6. 128 686 714 971 424 166 1× 10−82 SEQ/frame/particle (78)

The volume absorbed per particle per frame is number of SEQ
frame advances ×

volume
SEQ = volume

frame advance :

(
2lp
RH

) 4
3

×2π2
(
RH4l2p

)
= 2π2

(
(2lp)

10

RH

) 1
3

= 3. 316 087 367 219 182 637 8×10−123
m3

frame
(79)

This is the volume of ’raw’, full radius SEQ absorbed per frame advance. Logic, and cal-
culations (unpublished data), indicate that the quanta shrink as they approach the absorbing
matter.

The number of frame advances per second, is the number of frame advances, divided by
the age of the universe, number of frame advancesage of the universe :

(
RH
2lp

)2
RH
2c

= 2c
RH

4l2p
=

1. 506 053 303 548 235 063 6× 10104

s
(80)
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Note that the inverse of this number is 6. 639 859 798 408 221 496 7 × 10−105 seconds,
which is the value of ’small time’, from [3].

The number of SEQ absorbed per second per particle is the number of SEQ within a
particle, divided by the age of the universe, number of SEQ absorbed

second / particle :

(
RH
2lp

) 2
3

RH
2c

=
2c

RH

(
RH

2lp

) 2
3

=
9. 242 124 709 274 213 200 4× 1022

s
(81)

The volume of SEQ absorbed per particle per second is the volume absorbed per particle
per frame, times the number of SEQ absorbed per second per particle, volume absorbed

s
:

2π2

(
(2lp)

10

RH

) 1
3

× 2c

(
RH

4l2p

)
= 2π22c

(
R2H16l4p

) 1
3 = 4. 994 204 334 255 019 305 4× 10−19

m3

s

(82)

The energy absorbed per second, is the number of SEQ absorbed per second per particle,
times the energy per SEQ, energy absorbed

s
:

matching (76) above:

2c

RH

(
RH

2lp

) 2
3

× c~
RH

=
2c

RH

Eparticle = 1. 112 104 896 164 221 812 6× 10−29
m2

s3
kg (83)

The percentage increase in energy is, again, the Hubble constant: 2c
RH

c~
3
√
RH4l2p

= 2c
RH

c~
RSEQ

=

energy absorbed per second
energy of a particle

=

2c
RH

c~
3
√
RH4l2p

c~
RH
×
(
RH
2lp

) 2
3

=
2c

RH

(84)

Dividing the mass of the universe by the number of particles by the age of the universe
also gives us the energy absorbed per particle:(
RHc

4

4G

)
/

((
RH

2lp

) 4
3

)
/

(
RH

2c

)
=

c3

RH

(
2

G

~2

RH

) 1
3

= 1. 112 105 534 346 726 290 1×10−29
m2

s3
kg

(85)
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Our rate of addition of energy to particles, divided by the particle energy, is the Hubble
constant:

1. 112 104 896 164 221 812 6× 10−29 m
2

s3
kg

4. 866 923 572 019 502 859 7× 10−12 m
2

s2
kg

= 2. 285 026 423 175 903 855 4×10−18 per second = H

(86)

Particles are accreting energy, or quanta of space, at a rate equal to the Hubble constant.

11. Gravitational Potential Energy Accumulated per Second is the Accreted
Energy

The general equation of gravitational potential energy of mass m is:

U = G
Mm

d
(87)

whereM is the attracting mass and d is the distance between the centers of the masses.

Recall that particle energy is
(
c6

4G
~2
RH

) 1
3
. Let both masses be the particle mass, and the

distance between the centers of the two masses be two times the particle radius (the particles
are just touching), so that:

U = G
M2

particle

2r
= G

((
1
4G

~2
RH

) 1
3

)2
2

((
16l4p
RH

) 1
3

) =
1

8

(
c6

4G

~2

RH

) 1
3

=
1

8
Eparticle (88)

The value of 1
8
Eparticle is the gravitational potential energy for two adjacent particles. To

get the gravitational potential energy for the full volume around a mass, not just the adjacent
mass, we need to cube the distance, which is an increase of eight times. The gravitational
potential energy of the adjacent volume of mass is eight times a particle mass. Thus U, the
gravitational potential energy, matches the particle energy:

U = G
Mparticle (8Mparticle)

2r
= G

((
1
4G

~2
RH

) 1
3

)(
8

((
1
4G

~2
RH

) 1
3

))
2

((
16l4p
RH

) 1
3

) =

(
c6

4G

~2

RH

) 1
3

= Eparticle

(89)
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Taking this gravitational potential energy of a particle, and dividing it by the age of the
universe, we get a value for the rate of addition of gravitational potential energy per second,
to a particle:

U

T
=
G
Mparticle(8Mparticle)

2R
RH
2c

=

(
2c

RH

)(
c6

4G

~2

RH

) 1
3

= 1. 112 105 534 346 726 290 2× 10−29
m2

s3
kg

(90)

where T is the age of the universe.

This value matches our value of energy accreted per second by a particle. The potential
energy added per second is identical to the accreted energy.

U

T
= accreted energy per unit time (91)

The gravitational potential energy of a particle is the accreted energy.

12. Gravitational Force is the Extension of the Centripetal Force Beyond the
Particle Radius

In order for a vortex to spin, an inward, or centripetal, force must exist. Centripetal
force, FC , was defined as c4

2G
.

Looking at the gravitational force between two particles in direct contact, so that the
distance between their centers is two times their radii, we have:

FG = G
m(8m)

d2
= G

((
1
4G

~2
RH

) 1
3

)(
8
(
1
4G

~2
RH

) 1
3

)
(

2
(
16l4p
RH

) 1
3

)2 =
1

4
× c4

2G
(92)

At a distance of two radii, the gravitational force is very close to the centripetal force of
a particle, off by a factor of 4. This distance of two times the radius is outside the particle,
and we would expect any centripetal force that existed there to be less. Since the distance,
in this case, is twice the distance of a radius, and given that force drops by the inverse square
law, we would expect a doubling of the distance to produce a reduction in the force by 1/4,
just as we have calculated.
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If the distance between the particles was one radius (the particles are overlapping), the
gravitational force equals the centripetal force:

FG = G
m (8m)

r2
= G

((
1
4G

~2
RH

) 1
3

)(
8
(
1
4G

~2
RH

) 1
3

)
((

16l4p
RH

) 1
3

)2 =
c4

2G
(93)

At a distance of one radius, the centers of the masses are at a distance from one another
that is equal to the radius of a particle.

We can conclude that the gravitational force, and the centripetal force of the particle,
are identical forces, forming a continuum of force, so that the centripetal force can be said
to be the force at the particle boundary, but centripetal force also extends beyond the
particle boundary, where it is experienced as the gravitational force. Or we can say that the
centripetal force is the force of gravity. The two forces are the same force, simplifying the
situation, leaving us with just one force.

13. Quantum Gravity is the Accretion of the Quanta of Space by Particles of
Matter

Elementary particles are not static, unchanging entities; they are dynamical, formed as
a means for the expanding hyperverse to conserve angular momentum, while maintaining
centripetal force. The energy of the quanta decrease with expansion. To preserve angular
momentum, particles must continually accrete energy; that is, they must keep absorbing the
quanta of space. It is an ongoing process, driven by expansion, and this is gravity.

The absorbed space pulls along the matter embedded in it. The closer to the absorbing
matter, the faster space moves, just like water near a drain moves faster towards the drain
the closer the water is to the drain. Matter does not curve space; matter absorbs space,
incorporating the quanta of space into the necessary mass and volume to conserve angular
momentum and centripetal force.
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