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Some mathematics inspired by 137.036

J. S. Markovitch
P.O. Box 2411

West Brattleboro, VT 05303∗

(Dated: December 2, 2013)

The experimental value of the fine structure constant inverse from physics (approximately 137.036)
is shown to also have an interesting role in pure mathematics. Specifically, 137.036 is shown to occur
in the minimal solution to one of several slightly asymmetric equations (that is, equations whose
left- and right-hand sides are very similar).

I. INTRODUCTION

The experimental value of the fine structure constant
inverse from physics (approximately 137.036) [1, 2] will
be shown to also have an interesting role in pure math-
ematics. Specifically, 137.036 will be shown to occur in
the minimal solution to one of several slightly asymmetric
equations.

An equation is slightly asymmetric if its left- and right-
hand sides are very similar. Such equations may be pro-
duced by breaking the symmetry of a simple algebraic
identity by applying to it a substitution map or rewrit-
ing system [3]. Hence, the equations that follow are less
arbitrary than they might at first seem, as their form
derives from two slightly asymmetric equations already
analyzed, which were produced in the above manner [4].

II. A PAIR OF SLIGHTLY ASYMMETRIC
EQUATIONS

We begin by introducing a pair of slightly asymmetric
equations and inspecting their solutions. Let

(M − ε0)3

N3
+ (M − ε0)2 =

M3 −M0

N3
+M2 (1a)

and

(M − ε1)3

N3
+ (M − ε1)2 =

M3 −M−3

N3
+M2 −M−3 ,

(1b)

where ε0 and ε1 are variables such that

0 < ε0 < 0.1 (1c)

0 < ε1 < 0.1 (1d)

and M and N are positive integer constants where

M =
N3

3
+ 1 , (1e)

so that necessarily

M ≥ 10 N ≥ 3 . (1f)

∗Electronic address: jsmarkovitch@gmail.com

To understand these equations it is useful to identify val-
ues for ε0 and ε1 that fulfill Eqs. (1a) and (1b) for M = 10
and N = 3, which are the smallest integers allowed by
Eq. (1e), “the minimal solution” referred to at the outset.
Applying the above assignments to Eq. (1a) gives

(10− ε0)3

33
+ (10− ε0)2 =

103 − 100

33
+ 102

= 137 , (2a)

and to Eq. (1b) gives

(10− ε1)3

33
+ (10− ε1)2 =

103 − 10−3

33
+ 102 − 10−3

=
999.999

33
+ 99.999

= 137.036 . (2b)

These, in turn, give

ε0 =
1

839.932 138 792 177 197 . . .
(2c)

ε1 =
1

29 999.932 142 743 338 577 . . .
. (2d)

Observe that the above denominators are both somewhat
close to integers, with decimal portions beginning with

0.9321 .

Might this just be a coincidence? The next smallest pos-
itive integers fulfilling Eq. (1e), namely, M = 73 and
N = 6, will help resolve this issue. Repeating the earlier
substitutions now gives

(73− ε0)3

63
+ (73− ε0)2 =

733 − 730

63
+ 732

= 7130 (3a)

and

(73− ε1)3

63
+ (73− ε1)2 =

733 − 73−3

63
+ 732 − 73−3

= 7130.004 627 047 147 . . . ,
(3b)

which in turn give

ε0 =
1

47 522.990 846 536 145 793 . . .
(3c)

ε1 =
1

85 194 722.990 846 537 465 332 . . .
. (3d)
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Again the denominators are close to integers (indeed,
even closer), where their decimal portions now each begin
with

0.990 846 53 .

This suggests that coincidence is unlikely.

III. ANALYSIS OF DENOMINATORS

It is not hard to find a pattern in the denominators of
Eqs. (2c), (2d), (3c), and (3d) to the left of their decimal
points. For the denominators of ε0 in Eqs. (2c) and (3c)
we find that, respectively,

(N3 + 2)2 − 1 = (33 + 2)2 − 1

= 840

≈ 839.932 138 792 177 197 . . . ,

and

(N3 + 2)2 − 1 = (63 + 2)2 − 1

= 47523

≈ 47 522.990 846 536 145 793 . . . ;

whereas for the denominators of ε1 in Eqs. (2d) and (3d)
we find that, respectively,

3M4 = 3× 104

= 30 000

≈ 29 999.932 142 743 338 577 . . . ,

and

3M4 = 3× 734

= 85 194 723

≈ 85 194 722.990 846 537 465 332 . . . .

Hence, one would tend to expect that the approximations

(
M − 1

(N3 + 2)2 − 1

)3

N3
+

(
M − 1

(N3 + 2)2 − 1

)2

≈ M3 −M0

N3
+M2 (5a)

and(
M − 1

3M4

)3

N3
+

(
M − 1

3M4

)2

≈ M3 −M−3

N3
+M2 −M−3 (5b)

should prove especially accurate. Theorems 1 and 2,
which follow, will show that these approximations are,
in fact, quite accurate.

Theorem 1. Let

εA =

(
(M − ε0)

3

N3
+ (M − ε0)

2

)

−
(
M3 −M0

N3
+M2

)
, (6a)

where

ε0 =
1

(N3 + 2)2 − 1
, (6b)

and where M and N are positive integer constants such
that

M =
N3

3
+ 1 , (6c)

so that necessarily

M ≥ 10 N ≥ 3 . (6d)

Then

εA =
2K3 + 11K2 + 18K + 8

K(K2 + 4K + 3)3
, (6e)

where

K = N3 . (6f)

Proof. Equations (6c) and (6f) allow substitution for M
and N3 in Eq. (6a) to get

εA =
L+H

K(K2 + 4K + 3)3
,

where L and H are composed of these lower - and higher -
degree terms:

L = 26 + 137K3 + 175K2 + 111K

+ 9

(
K

3
+ 1

)
− 27

(
K

3
+ 1

)2

− 6

(
K

3
+ 1

)
K − 45

(
K

3
+ 1

)
K2

− 72

(
K

3
+ 1

)2

K

H = 57K4 + 12K5 +K6

− 44

(
K

3
+ 1

)
K3 − 3

(
K

3
+ 1

)2

K4

− 2

(
K

3
+ 1

)
K5 − 24

(
K

3
+ 1

)2

K3

− 16

(
K

3
+ 1

)
K4 − 66

(
K

3
+ 1

)2

K2 .

Conveniently, all of the fourth, fifth, and sixth degree
terms of H collectively cancel, so that

H = −112K3 − 66K2 ,
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whereas L simplifies to

L = 114K3 + 77K2 + 18K + 8 .

This leads to further large cancellations, namely

εA =
L+H

K(K2 + 4K + 3)3

=
(114K3 + 77K2 + 18K + 8) + (−112K3 − 66K2)

K(K2 + 4K + 3)3

=
(114K3 − 112K3) + (77K2 − 66K2) + 18K + 8

K(K2 + 4K + 3)3

=
2K3 + 11K2 + 18K + 8

K(K2 + 4K + 3)3
.

Remark 1. It follows from Eqs. (6d) and (6f) that

εA ≤
47 879

16 003 008 000
.

Theorem 2. Let

εB =

(
(M − ε1)

3

N3
+ (M − ε1)

2

)

−
(
M3 −M−3

N3
+M2 −M−3

)
, (8a)

where

ε1 =
1

3M4
, (8b)

and where M and N are positive integer constants such
that

M =
N3

3
+ 1 , (8c)

so that necessarily

M ≥ 10 N ≥ 3 . (8d)

Then

εB =
1

3M7N3
+

1

9M8
− 1

27M12N3
. (8e)

Proof. Equation (8a) expands and simplifies to

εB =
−27M10 + 9M5 − 1

27M12N3
+

3M4N3 − 18M9N3

27M12N3

−
(
− 1

M3N3
− 1

M3

)
=
−27M10 + 9M5 − 1 + 3M4N3 − 18M9N3

27M12N3

+
27M9 + 27M9N3

27M12N3
. (9a)

Combining terms gives

εB =
9M9N3 + 27M9 − 27M10 + 9M5 + 3M4N3 − 1

27M12N3
.

But, Eq. (8c) determines that the three largest terms of
the above numerator sum to 0, which is to say that

9M9N3 + 27M9 − 27M10

= 9M9N3 + 27M9 (1−M)

= 9

(
N3

3
+ 1

)9

N3 + 27

(
N3

3
+ 1

)9(
1− N3

3
− 1

)
= 9

(
N3

3
+ 1

)9

N3 − 27

3

(
N3

3
+ 1

)9

N3

= 0 . (9b)

Hence,

εB =
9M5 + 3M4N3 − 1

27M12N3
(9c)

=
1

3M7N3
+

1

9M8
− 1

27M12N3
.

Remark 2. It follows from Eq. (8d) that

εB ≤
1 709 999

729 000 000 000 000
.

Remark 3. The cancellations that take place above de-
rive from the first expression on the right-hand side of
Eq. (8a) expanding into 4 + 3 terms, while its second
expression is comprised of 2 + 2 terms. The four high-
est powers of M cancel irrespective of how M is defined,
leaving the 3 + 2 terms and 1 + 1 terms at the top of Eq.
(9a). Combining terms reduces the four largest terms
to three, where, by the substitutions of Eq. (8c), these
three cancel, leaving just the 2 + 1 and 0 + 0 terms of
Eq. (9c). Hence, all 2 + 1 = 3 terms of Eq. (9c) derive
from uncanceled portions of the first expression on the
right-hand side of Eq. (8a).

IV. ANALYSIS OF THEOREMS

Theorems 1 and 2 prove that Eqs. (5a) and (5b) are
excellent approximations given the following definitions

ε0 =
1

(N3 + 2)2 − 1

ε1 =
1

3M4
.

Their effectiveness appears to stem from the cancellation
of many higher degree terms, which, in turn, is a con-
sequence of the restriction that M = N3/3 + 1. So far,
so good. But the denominators above are integers, and
hence do nothing to fit the decimal portions of the de-
nominators of Eqs. (2c), (2d), (3c), and (3d) (that is, the
digits to the right of their decimal points).
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TABLE I: This table has six rows, each row having four lines.
In each row the value κ(N) (first line) grows ever closer to the
decimal portions of 1/ε0 and 1/ε1 (second and third lines),
where ε0 and ε1 derive from Eqs. (1a) and (1b), respectively.
The decimal portion of 1/ε2 (fourth line) derives from Eq.
(14a). Digits that all agree are in boldface.

N = 3

0.932 142 857 142 857 . . .

0.932 138 792 177 197 . . .

0.932 142 743 338 577 . . .

0.932 028 626 207 426 . . .

N = 6

0.990 846 537 466 069 . . .

0.990 846 536 145 793 . . .

0.990 846 537 465 332 . . .

0.990 846 250 946 436 . . .

N = 9

0.997 265 888 165 281 832 472 . . .

0.997 265 888 154 794 576 665 . . .

0.997 265 888 165 281 305 466 . . .

0.997 265 880 509 537 517 610 . . .

N = 12

0.998 844 264 373 772 720 028 . . .

0.998 844 264 373 438 806 101 . . .

0.998 844 264 373 772 717 016 . . .

0.998 844 263 795 146 638 689 . . .

N = 15

0.999 407 846 001 026 996 540 . . .

0.999 407 846 001 003 938 327 . . .

0.999 407 846 001 026 996 485 . . .

0.999 407 845 923 182 446 748 . . .

N = 18

0.999 657 211 407 306 271 338 . . .

0.999 657 211 407 303 682 194 . . .

0.999 657 211 407 306 271 336 . . .

0.999 657 211 392 203 788 392 . . .

V. IMPROVED DEFINITIONS

As it turns out, recasting Eqs. (6b) and (8b) as

ε0 =
1

[(N3 + 2)2 − 1]− 1 + κ(N)
(10a)

ε1 =
1

3M4 − 1 + κ(N)
(10b)

and letting

κ(N) =
(N3 + 0)(N3 + 2)

(N3 + 1)(N3 + 3)
(11)

produces ε0 and ε1 that better approximate ε0 and ε1 as
they appear in Eqs. (2c), (2d), (3c), and (3d).

So, if M = 10 and N = 3, then Eqs. (10a) and (10b)
give

ε0 =
1

[(33 + 2)2 − 1]− 1 + κ(3)

=
1

839.932 142 857 142 857 . . .

ε1 =
1

3× 104 − 1 + κ(3)

=
1

29999.932 142 857 142 857 . . .
.

The decimal portions of the above denominators both
equal κ(3) and appear in line one under N = 3 in Table
I, whereas lines two and three hold the decimal portions
of the denominators of Eqs. (2c) and (2d). The digits
that all agree are in boldface.

In the same way, if N = 6 and M = 73, then Eqs.
(10a) and (10b) give

ε0 =
1

[(63 + 2)2 − 1]− 1 + κ(6)

=
1

47 522.990 846 537 466 069 . . .

ε1 =
1

3× 734 − 1 + κ(6)

=
1

85 194 722.990 846 537 466 069 . . .
.

The decimal portions of the above denominators both
equal κ(6) and appear in line one under N = 6 in Table
I, whereas lines two and three hold the decimal portions
of the denominators of Eqs. (3c) and (3d). The digits that
all agree are again in boldface. Equivalent calculations
for N = 9 through N = 18 appear in lines one through
three in Table I, where κ(N) and the decimal portions
of 1/ε0 and 1/ε1 from Eqs. (1a) and (1b), respectively,
are seen to grow ever closer. In this way, κ(N) helps
approximate both ε0 and ε1: a curious result.

VI. ANOTHER SLIGHTLY ASYMMETRIC
EQUATION

One immediately suspects that there may be other
slightly asymmetric equations linked to κ(N), as indeed
there are. Let

(M − ε2)3

N3
+ (M − ε2)2 =

M3 −M0

N3
+M2 −M0 ,

(14a)

so that for M = 10 and N = 3

(10− ε2)3

33
+ (10− ε2)2 =

103 − 100

33
+ 102 − 100

= 136 , (14b)

where Eq. (14a) differs from Eq. (1a) only in having M0

twice on its right-hand side. The above equation gives

ε2 =
1

29.932 028 626 207 426 . . .
. (14c)
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The decimal portion of the above denominator appears
in line four under N = 3 in Table I, with digits matching
κ(3) in boldface. Now consider that Eq. (2d) gave

ε1 =
1

29 999.932 142 743 338 577 . . .
,

almost exactly a thousandfold difference in denomina-
tors. Ideally, a single formula should cover both cases.

VII. EQUATIONS WITH DIFFERENT
EXPONENTS

Given that Eq. (14a) uses M0 on its right-hand side
to produce ∼1/29.932 028 626 207 426, and that Eq. (1b)
uses M−3 to produce ∼1/29 999.932 142 743 338 577, it
seems likely that a general formula using M−p is possible.

To illustrate, let p be an integer such that

p ≥ −1 ,

where

(10− ε)3

33
+ (10− ε)2 =

103 − 10−p

33
+ 102 − 10−p ,

(15a)

so that for p = 0 the above equation recovers Eq. (14b),
which produces 136, whereas for p = 3 it recovers Eq.
(2b), which produces 137.036.

Now, for p = −1, 0, 1, etc., Eq. (15a) gives 1/ε as:

2.930 960198 505082 351 . . .

29.932 028626 207426 996 . . .

299.932 131472 504679 103 . . .

2999.932 141719 061799 505 . . .

29999.932 142743 338577 196 . . .

299999.932 142845 762467 404 . . .

2999999.932 142856 004818 551 . . .

29999999.932 142857 029053 287 . . .

299999999.932 142857 131476 757 . . .

2999999999.932 142857 141719 104 . . .

29999999999.932 142857 142743 339 . . .

299999999999.932 142857 142845 76247 . . .

...

29999999999999999.932 142857 142857 142743 . . .

Note that, interestingly, the sequences in red from rows
1–6 repeat in rows 7–12. More importantly, the above
values’ decimal portions appear to approach

0.932142857 = 0.932 +
1

7000

for ever larger p. Hence, one would tend to expect that
each row, above, differs from

299 . . . 99︸ ︷︷ ︸
p+1 nines

.932 +
1

7000

by an ever smaller amount as p → ∞. But the decimal
portion of the above value also can be stated compactly
as

κ(3) =
(33 + 0)(33 + 2)

(33 + 1)(33 + 3)
=

261

280

= 0.932 +
1

7000
,

so that the above expression can be rewritten compactly
as

299 . . . 99︸ ︷︷ ︸
p+1 nines

+κ(3) .

As another illustration, let p be an integer such that

p ≥ −1 ,

where

(10− ε)3

33
+ (10− ε)2 =

103 − 10−p

33
+ 102 ,

(15b)

so that for p = 0 the above equation recovers Eq. (2a),
which produces 137.

Now, for p = −1, 0, 1, etc., Eq. (15b) gives 1/ε as:

83.932 102158 599679 621 . . .

839.932 138792 177197 926 . . .

8399.932 142450 695096 415 . . .

83999.932 142816 498569 040 . . .

839999.932 142853 078433 212 . . .

8399999.932 142856 736414 798 . . .

83999999.932 142857 102212 908 . . .

839999999.932 142857 138792 719 . . .

8399999999.932 142857 142450 700 . . .

83999999999.932 142857 142816 4986 . . .

839999999999.932 142857 142853 078433 7 . . .

8399999999999.932 142857 142856 736414 8 . . .

...

839999999999999999.932 142857 142857 142853 . . .

...

8399 . . . 99︸ ︷︷ ︸
p+1 nines

+ κ(3)

Again, the sequences in red from rows 1–6 repeat in rows
7–12. More importantly, the above values’ decimal por-
tions likewise appear to approach κ(3) for ever larger p.
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VIII. A GENERAL FORMULA

Of course, Eq. (15a) can be expressed more generally
in terms of M and N . Let

(M − ε)3

N3
+ (M − ε)2 =

M3 −M−p

N3
+M2 −M−p ,

(16a)

where M and N are positive integer constants such that

M =
N3

3
+ 1 , (16b)

and p is an integer where

p ≥ −1 .

Then, as p → ∞, the decimal portion of 1/ε appears to
approach κ(N) as a limit.

So, if N = 6, then Eq. (16b) gives M = 73, so that
with p = 15, Eq. (16a) gives

(73− ε)3

63
+ (73− ε)2 =

733 − 73−15

63
+ 732 − 73−15 .

This, in turn, gives

1

ε
= 1 95113 36394 53428 71312 63685

03682.99084 65374 66069 06129

66353 13427 1825 . . . ,

whose decimal portion is reproduced to 33 digits by

κ(N) = κ(6)

=
(63 + 0)(63 + 2)

(63 + 1)(63 + 3)

=
15696

15841
= 0.99084 65374 66069 06129 66353 13427 1826 . . . .

As the integer portion of 1/ε equals 3 × 7316 − 1, or
3Mp+1 − 1, one can guess that for Eq. (16a) the com-
pact equation

ε =
1

3Mp+1 − 1 + κ(N)
(16c)

gives a very accurate approximation of ε when p is large.
One could go on multiplying examples of the above

type indefinitely, but the general goal of demonstrating
that 137.036 resides at a minimum associated with some
interesting mathematics has, the author hopes, already
been achieved. And although some key mathematical
tasks have been left undone—e.g., proving that κ(N), as
used above, actually represents a limit—this is partly be-
cause the purpose here has been to raise more intriguing
questions than are resolved.

IX. SUMMARY AND CONCLUSION

At the outset it was claimed that the experimental
value of the fine structure constant inverse from physics

(approximately 137.036) would be shown to have an in-
teresting role in pure mathematics: specifically, that it
would occur in the minimal solution to one of several
slightly asymmetric equations. Equation (1b) is this
“slightly asymmetric equation,” where, as shown by Eq.
(2b), the value 137.036 does occur when its positive in-
tegers M and N are at a minimum.

But, has 137.036 also been shown to have an interesting
role in pure mathematics?

Admittedly, 137.036 does not appear to be nearly as
important to mathematics as it is to physics, where it
is a coupling constant that has fascinated a succession
of illustrious physicists from Einstein onward [1]. Never-
theless, the various equations associated with 137.036 do
provoke a measure of interest of their own, in particular
the way that Eq. (2b) produces

137.036 =
999.999

33
+ 99.999 ,

while simultaneously producing

137.036 =

(
10

3
− 1

3× 29 999.932 . . .

)3

+

(
10− 1

29 999.932 . . .

)2

(17)

with the assistance of an unexpectedly round number:
∼29 999.932. Also suggestive is how the higher degree
terms in Theorem 2 neatly cancel, leaving only the much
smaller terms responsible for the above nearly round re-
sult; and the way that the function κ(N) approximates
the decimal portions of the denominators of so many vari-
ants of ε, as well as the decimal portion of the above
denominator. And, finally, there is the (perhaps unex-
pected) economy of some of the equations, for instance,
Eq. (16c).

Of course, this begs the broader question of whether
∼137.036 occurs concurrently in mathematics and
physics as a matter of coincidence; but, as the ex-
perimental fine structure constant inverse measures
137.035 999 074 (44), which 137.036 fits within seven
parts per billion [2], the degree of coincidence (if it is
such) must be remarkable. Moreover, the four expres-
sions on the right-hand side of Eq. (17)

10

3

1

3× 29 999.932 . . .

10
1

29 999.932 . . .

can be reproduced from the sines squared of the quark
and lepton angles, as shown in [5, 6]. Given the precision
with which some of these six angles are known (e.g., the
Cabibbo angle) the collective weight of evidence suggests
that it may be non-coincidence that strains credulity the
least.
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