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Present-day thermodynamics has long outgrown the initial frames of the heat-engine 
theory and transmuted into a rather general macroscopic method for studying kinetics 
of various transfer processes in their inseparable connection with the thermal form of 
motion. However its primary notions and mathematical instrument as before based on  

concepts of thermostatics, to which time, speed and productivity of processes are alien,  
and on the equations transitory in case of irreversible processes in inequalities. It is  
offered essentially other approach at which the thermostatics equations follow from 

thermokinetics of spatially non-uniform systems. 
 

Introduction. One of the most attractive features of the thermodynamic method has always 
been the possibility to obtain a great number of consequences of various phenomena as based on 
few primary principles. Therefore, it is not by pure accident that all the greatest physicists and 
many mathematicians of the last century (H.Lorenz, A.Poincaré, M.Planck, W.Nernst, 
K.Caratheodory, A.Sommerfeld, A.Einstein, M.Born, E.Fermi, J.Neiman, L.Landau, 
Y.Zeldovich, R.Feynman, etc) in their investigations placed high emphasis on thermodynamics 
and, based on it, have obtained many significant results. However, thermodynamics have 
presently lost its peculiar position among other scientific disciplines. In our opinion, one of the 
reasons of such situation is that thermodynamics has lost its phenomenological nature with 
considerations of statistical-mechanical character gaining influence in its conceptual basis. As a 
result, the existing theory of irreversible processes does not reach the rigor and completeness 
intrinsic for the classic thermodynamic method. Striving for excluding postulates from the 
grounds of theory dictates the necessity to base thermokinetics on only those statements that are 
beyond any doubt and construed as axioms [1]. 

 
1. Substantiation of Total energy Conservation Law. Classic thermodynamics is known to be 
based on the principle of heat Q and work W equivalence. R. Clausius, the founder of classic 
thermodynamics, formulated this principle as follows, ”In all cases, when heat becomes work in 
a cyclic process, the amount of the heat expended is proportional to the work done and vice 
versa, work done is converted into an equivalent amount of heat” [2]. If heat and work are 
measured in the same units of the international system of units, SI, the equivalence principle may 
be written as a simple relationship: 

                              Wc / Qc = ∫ đW/ ∫ đQ = 1,                                                                  (1) 

где Wc, Qc – work done and heat supplied for cycle; đW, đQ – their elementary amounts for 
particular parts of the cyclic process under consideration.  

Taking into consideration the rule of signs accepted in thermodynamics (the work done by a 
system and the heat supplied to it are positive) equation (1) becomes: 
 

                                            ∫ (đQ – đW) = 0.                                                                     (2) 
 

Clausius was the first who noticed that the above result did not depend on the path of the 
process under consideration. That allowed him to use a known mathematical theorem of 
curvilinear integrals. It states that if a curvilinear integral of an arbitrary differential form (in our 
case đQ – đW) becomes zero along any closed path within some space of variables, the integrand 
represents the exact differential of function of these variables U: 
 

                      dU = đQ – đW or đQ = dU + đW.                                                        (3) 



 
R. Clausius did not concretize the space of variables wherein he considered the curvilinear 

integral (2) since he had not yet found the heat exchange (entropy) coordinate. Therefore he 
initially called the function U the total heat of a body having construed it as the sum of the heat 
the body received from outside and the heat released as a result of the disgregation work (of 
dissipative character). That caused some confusion in notions since imparted the status of state 
function to heat and disgregation work. Therefore a rather heated discussion combusted about 
the Э function. In particular, W. Thomson recommended the term mechanical energy of a body 
in particular state for the U value. From that time on this function has been referred to as the 
internal energy. Being the state function of a system, that function did not depend on the motion 
or position of the system relative to the environment. In such a case the isolation of the system 
from the environment (Q, W = 0) left that function invariable. Based on that fact, expression (3) 
started to be considered in classic thermodynamics as a particular case of the energy 
conservation law called the first law of thermodynamics.  

Since classic thermodynamics from its origin has always been restricted to describing the 
behavior of internally equilibrium (spatially homogeneous) systems with parameters the same for 
all of the system parts, all kinds of work such a system could do had the unordered character [2]. 
Here comes, in particular, the uniform compression work đWр expressed through the product of 
the absolute pressure p and the volume variation dV. In such a case the Э function could actually 
be construed as the dissipated part of energy, which corresponded to the law of energy 
conservation in the form of (4). However, in the more general case of non-equilibrium and 
especially spatially heterogeneous systems this is far from being so. In particular, the chemical and 
nuclear energy of homogeneous systems is also partly convertible into other forms despite they do 
not either depend on the position of the system relative to surrounding bodies, i.e. relate to internal 
energy. The situation became even more complicated with changing to the spatially heterogeneous 
systems to be studied, in particular, to the so-called extended systems with the environment 
included. Such systems can do some useful work before internal equilibrium has set in there. These 
systems may comprise also polarized and magnetized bodies located in external force fields. In all 
those cases the internal energy U ceased being that “dissipated” part of energy meant in (3).  

All this impels to search for a more general substantiation of the law of its conservation. To 
this end let us consider the results of those experiments on definition of the heat and work 
equivalence principle, which related to non-equivalent systems with relaxation processes running 
therein. Their specific character was such that heat was obtained there by friction (dissipation). 
These include classic experiments by Joule, in particular, the experiment with calorimeter and 
agitator driven by dropping weight; also his experiment with the Proney brake that brakes the drum 
calorimeter (1843-1878); Girn’s experiments with lead flattening on anvil with drop hammer 
(1859); Lenz’s experiments with solenoid discharging to active resistance in vessel calorimeter 
(1972) and many other experiments involving battery charging, gas transfer between vessels, 
electrolyte decomposition, etc [3]. Those experiments had such a result that a system disturbed 
from equilibrium by a mechanical (ordered) work Wi

е= Wi
е(ri) done on it returned to the initial 

equilibrium state after a heat amount Q strictly equivalent to the work had been removed from the 
system. Taking the work of both ordered and unordered character (according to the above 
classification) into consideration means the necessity to extend the space of variables wherein the 
above considered cyclic processes take place. It is easy to reveal in this case that integrand (2) 
constitutes a state function in the space of variables (Θi, ri), i.e. a more general one than the system 
energy. This function depends on both the internal Θi and external ri system coordinates, i.e. 
constitutes the sum of the external and internal system energies. Such energy is usually called the 
total energy of the system. The decrease of the function Э = Э(Θi, ri) defines the sum of all 
(ordered and unordered) works the system do: 
 

                               – dЭ(Θi, ri) = Σi đWi
a + Σi đWi

e.                                                       (4) 
 



According to this expression the energy of a system, in the absence of external impacts on 
the system (ΣiđWi

a = 0, ΣiđWi
e = 0), remains invariable at any variations of its state. In other 

words, the energy of an isolated system is constant. Thus the generalization of the heat and 
work equivalence principle to non-equilibrium systems directly leads to the law of 
conservation of “total” energy as a state function for the entire set of interacting (mutually 
moving) bodies. However, for such a system (isolated) all its energy is internal. This fact 
reveals the imperfection of dividing the energy into external and internal. From the position of 
energodynamics considering the entire set of interacting bodies as a single non-equilibrium 
whole it is more important that its energy be measured in an own (absolute) reference frame 
not connected with the state of any of the bodies within the environment1). Since the term 
system energy with regard to the function Э(Θi,ri) unambiguously tells the energy belongs to 
the system itself, the terms “total”, “external”, “internal”, etc energies become superfluous. 
This allows focusing on other properties of energy and its other components which 
characterize its conversion capacity.  

 
 

2. Extension of Variables Space with Introduction of Spatial Heterogeneity  
Parameters for System as a Whole 

 
The fact that relaxation vector processes (temperature, pressure, concentration, etc 

equalization) run in non-equilibrium systems requires introducing specific parameters of spatial 
heterogeneity characterizing the state of continuums as a whole. To do so, it is necessary, 
however, to find a way how to change over from the density (fields) distribution functions ρi = 
dΘi/dV  of some extensive physical values Θi to the parameters of the system as a whole, which 
thermodynamics operates with. This change may be conducted in the same way as used in 
mechanics to change over from motion of separate points to system center-of-mass motion. To 
better understand such a change, let us consider an arbitrary continuum featuring non-uniform 
density distribution ρi = ρi(r,t) of energy carriers2) over the system volume V. Fig.1 illustrates the 
arbitrary density distribution ρi(r,t) as a function of spatial coordinates (the radius vector of a 
field point r) and time t. As may be seen from the figure, when the distribution Θi deviates from 
that uniform (horizontal line), some amount of this value (asterisked) migrates from one part of 
the system to other, which displaces the center of this value from the initial Ri0 to a current 
position Ri.  

Position of the center of a particular extensive 
value Θi defined by the radius vector Ri is given by a 
known expression: 
 

Ri = Θi
-1

 ∫ ρi(r,t) rdV ,  (i =  1,2,…,n)          (5) 
 

For the same system, but in a homogeneous state, 
the Θi center position ri0 may be derived if factoring 
ρi = ρi0(t) in equation (1) outside the integral  
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1) Otherwise, should the Energy conservation be violated, the Energy of a system would vary with the state variation 
of these bodies despite the absence of Energy exchange with the system. 
2) The Energy carrier is construed as a material carrier of the ith Energy component, which quantitative measure is 
the physical value Θi.. So the mass Mk of the kth substance is a carrier of the rest Energy; the charge Θe – a carrier of 
the electrostatic Energy of the system; the component momentum Mkvk – a carrier of its kinetic Energy, etc. 
 



Thus the state of a heterogeneous system features the emergence of specific “distribution 
moments” Zi of the energy carriers Θi: 
 

 Zi = Θi(Ri – Ri0) = = ( ) ( )[ ] .ρ,ρ 0∫ −
V

ii dVtt rr                                       (7) 

The electrical displacement vector D = Θе∆Rе is one of such moments with Θе as electrical 
charge and ∆Rе as displacement of its center.  

Expression (7) most evidently manifests that the parameters Zi of spatial heterogeneity are 
additive values and summed up providing the ρi0(t) value remains the same in various parts of a 
heterogeneous system. This follows from the conservation of integral (7) at its partition into parts 
with a volume V’ < V 1). However, these parameters become zero at “contraction” of the system 
to a material point, when ρi(r,t) →  ρi0(t). This stands in absolute conformity with the degrees-of-
freedom theorem because the processes of density redistribution ρi(r,t) are absent in material 
points. And once again this confirms the fact that an entity of continuum elements considered as 
a system, non-equilibrium in whole, possesses additional degrees of freedom.  

For any part of a homogeneous isolated system the ri0 value remains unvaried since running 
of any processes is herein impossible. Therefore the ri0 may be accepted for such systems as a 
reference point r or ri and set equal zero (ri0 = 0). In this case the vector ri will define a 
displacement of the Θi center from its position for the system being in internal equilibrium state, 
and the moment of distribution of a particular value Θi in it will become: 

 
                        Zi = ΘiRi         (8) 

 
Herein the moment Zi becomes an absolute extensive measure of the system heterogeneity 

with respect to one of the system properties – like such absolute parameters of classic 
thermodynamics as mass, volume, entropy, etc.  

Explicitly taking into account the spatial heterogeneity of systems under investigation is 
decisive in further generalization of the thermodynamic investigation method to non-equilibrium 
systems. As a matter of fact, this is the spatial heterogeneity (heterogeneity of properties) of 
natural objects that causes various processes running in them. This implies the exclusive role the 
distribution moments Zi play as a measure for deviation of a system in whole from internal 
equilibrium of the ith kind. Introducing such parameters allows precluding the major drawback of 
non-equilibrium thermodynamics, viz. lack of extensive variables relating to the gradients of 
temperature, pressure, etc. Classic thermodynamics is known to have crystallized into an 
independent discipline after R. Clausius succeeded in finding a coordinate (entropy) related to 
temperature in the same way as pressure to volume and thus determinately described the simplest 
thermo-mechanical systems. The distribution moments Zi play the same part in thermokinetics 
coming into being. As will be shown later, these relate to the main parameters introduced by 
non-equilibrium thermodynamics – thermodynamic forces, in the same way as the generalized 
potentials to the coordinates in equilibrium thermodynamics. These are the distribution moments 
which make the description of heterogeneous media a deterministic one thus enabling 
introducing in natural way the concept of generalized velocity of some process (flow) as their 
time derivatives. They visualize such parameters as the electrical displacement vectors in 
electrodynamics and generalize them to phenomena of other physical nature. In mechanics the Zi 
parameters have the dimension of action (Θi – momentum of a body, Ri – its displacement from 
equilibrium position), imparting physical meaning to this notion. These are the parameters which 
allow giving the analytic expression to the system working capacity having thus defined the 
notion of system energy. Using such parameters provides a clear view of the degree of system 
                                                 
1)  With symmetrical density ρi(r,t) distributions for whatever parameter, e.g., fluid-velocity profiles in tubes, expression (7) 
should be integrated with respect to annular, spherical, etc layers with V′ > 0, wherein the function ρi(r,t) is monotone increasing 
or decreasing. 
 



energy order, enables proposing a universal criterion of the non-equilibrium system evolution, 
etc. Paraphrasing a M. Planck’s statement regarding entropy one may positively say that the 
distribution moments are exactly the parameters entire non-equilibrium thermodynamics is 
“standing and falling” with.  

 
 

3. Coordinates of Non-Equilibrium Redistribution and Reorientation Processes 
 

The moments of distribution (7) contain vectors of displacement Ri, each of which can be 
expressed product of a basic (individual) vector еi,  characterising its direction, on module Ri = |R i 
| this vector. Therefore the complete variation of the displacement vector ri may be expressed as 
the sum of two summands: 

 
               dRi = еidRii + Ridеi ,                      (9) 

 
where the augend еidri = dri characterizes elongation of the vector Ri, while the addend Ridеi – 
its turn.  

Let us express now the dеi value characterizing the variation of the distribution moment 
direction in terms of an angular displacement vector φ normal to the plane of rotation formed by 
the vectors еi and dеi. Then the dеi will be defined by the external product dφi×еi of vectors dφi 
and еi, so the addend in (1.6.1) will be ΘiRidеi = dφi×Zi. Hence, expression of full differential of 
the distribution moments looks like: 

 
                    dZi = (∂Zi/∂Θi)dΘi + (∂Zi/∂ri)dri + (∂Zi/∂φi)dφi.                          (10) 

 
According to the degrees-of-freedom theorem this means that any state function describing a 

heterogeneous system in whole are generally defined by also the full set of variables Θi, ri and φi. 
Since further resolution of the vector Zi is impossible, expression (7) indicates there are three 
categories of processes running in heterogeneous media, each having its own group of 
independent variables. The first-category processes running at Ri = const involve the uniform 
variation of the physical value Θi in all parts of the system. Such processes resemble the uniform 
rainfall onto an irregular (in the general case) surface. Here comes, in particular, the pressure 
field altered in liquid column with variation of free-surface pressure. These processes also cover 
phase transitions in emulsions, homogeneous chemical reactions, nuclear transformations and the 
similar scalar processes providing the composition variations they induce are the same in all 
parts of the system. We will call them hereinafter the uniform processes regardless of what 
causes the increase or decrease in amount of whatever energy carrier Θi (and the momentum 
associated) – either the external energy exchange or internal relaxation phenomena. These 
processes comprise, as a particular case, the reversible (equilibrium) processes of heat exchange, 
mass exchange, cubic strain, etc, which, due to their quasi-static nature, practically do not disturb 
the system spatial homogeneity.  

Processes described by the addend in (7) run with the Θi parameters being constant and 
consist in their redistribution among the parts (zones) of a heterogeneous system. They involve 
decreasing, e.g., the entropy S΄, mass М΄, its momentum Р΄, its volume V΄, etc, in some parts of 
the system and by increasing the same in other parts. Such processes are associated with the Θi 
value center position variation Ri within the system and resemble the migration of fluids from 
one part of a vessel into another. Therefore we will call them the redistribution processes. Such 
processes are always non-equilibrium even if they run infinitely slowly (quasi-statically) since 
the system remains spatially heterogeneous in this case. State modifications of such a kind are 
caused by, e.g., the useful external work of external forces, the non-equilibrium energy exchange 
processes that induce non-uniform variation of the Θi coordinates inside the system, and the 
vector relaxation processes involving equalization of temperature, pressure, chemical and other 



system potentials. All processes of such a kind feature a directional (ordered) character, which 
distinguishes the useful work from the work of uniform (quasi-static) introduction of substance, 
charge, etc, or the expansion work. According to (1.3.2) the coordinates of the processes 
pertaining to this category are understood as the displacement vectors Ri. These coordinates 
should be attributed to the external parameters of the system since they characterize the position of 
the energy carrier Θi center in whole relative to external bodies (the environment) just as the 
center of mass Rm of the system or its center of inertia Rw.  

There are also the processes of reorientation of magnetic domains, electrical and magnetic 
dipoles, axes of rotation of bodies, etc., running in a number of systems, e.g., in ferromagnetic 
materials. The micro-world manifests them in, e.g., the unified spin-orientation arrangement’ the 
macro-systems – in the spontaneous magnetization of ferromagnetic materials, while the mega-
world – in the close-to-equatorial plane alignment of the galaxies’ spirals, asteroidal belts, orbits 
of the primary planets and their satellites, etc. The systems with processes of such a kind will 
hereafter be called, for short, oriented. These include also the bodies with shape anisotropy. The 
reorientation processes are not reducible to the transfer and redistribution processes either. This 
means that the coordinate of such kind a process is a variation of the angle φi characterizing the 
orientation of distribution moment Zi of the system as a whole.  

Thus, all processes running in heterogeneous systems may be broken down into three groups: 
uniform, redistribution and reorientation processes, which coordinates are, respectively, 
variables Θi, ri and φi. This fundamentally distinguishes thermokinetics from classic 
thermodynamics and the theory of irreversible processes, where the state of a system is defined 
by exclusively a set of thermostatic variables Θi.  

The undertaken expansion of the space of variables by introducing the vectors of 
displacement Ri makes it possible to cover not only quantitative, but as well qualitative 
variations of energy in various forms. The fact that vector processes run in systems along with 
scalar processes means that both the ordered We and unordered Wun works are generally done in 
such systems. It becomes clear that the irreversibility of real processes associated with the energy 
dissipation (i.e. with losing the capacity for ordered work) becomes apparent in the process 
scalarization, i.e. in losing vector character of the process. Furthermore, a possibility appears to 
further distinguish between the energy transfer processes (i.e. the energy transfer between bodies 
in the same form) and the energy conversion processes (i.e. the energy conversion from one form 
into another)1).  

 
 

4. Introduction into basic equation of energodynamics force and its moment 
 

Let us consider the consequences ensuing from the fact itself of existing the system energy 
Э(Θi, ri) as a function of the quite certain set of arguments (state coordinates) As shown above, 
the energy of a heterogeneous system as a function of its state is generally expressed as Э = 
Э[Zi(Θi,Ri,φi)], where i = 1, 2, …, n – number of energy components equal to the maximal 
number of independent processes for some of their categories (uniform processes, redistribution 
and reorientation processes). This means that the exact differential of energy may be expressed 
by the following relationship [4]: 
 

dЭ = Σi(∂Э/∂Θi)dΘi + Σi (∂Э/∂ri)dri + Σi (∂Э/∂φi)dφi.                            (11) 
 

Derivatives of some system parameters (Э) with respect to other ones (Θi, ri , φi) are also 
system parameters. Therefore denoting them as: 

Ψi ≡ (∂Э/∂Θi);                                                          (12) 
                                                 
1) As will be shown hereinafter, the Energy transfer is associated with unordered work done, whereas the Energy conversion – 
with ordered work. 



  Fi ≡ – (∂Э/∂ri);                                                    (13) 

Мi ≡ – (∂Э/∂φi),                               (14) 

gives the fundamental identity of energodynamics in the form: 

dЭ ≡ ΣiΨi dΘi – Σi Fi ·dri – Σi Мi·dφi,                                 (15) 

For isolated systems the right-hand member of identity (9) becomes zero. For systems not 
changing its spatial orientation (φi= const) the two last terms in (9) may be combined, then the 
fundamental identity of energodynamics becomes: 
 

dЭ ≡ ΣiΨi dΘi – Σi Fi·dri.                         (16) 
 

Identities (15) and (16) are nothing else but a result of the joint definition of the related 
parameters Ψi and Θi, Fi and ri or Zi, Мi and φi. To clarify the physical meaning of the 
parameters thus introduced, let us first consider the particular case of internally equilibrium 
(spatially homogeneous) and stationary thermo-mechanical systems. Such simplest systems may 
be instantiated as the working media of heat engines in the vaporous or gaseous state. They have 
two degrees of freedom – thermal and mechanical, i.e. the capacity for the heat exchange Q and 
the uniform expansion work Wex. Due to the absence of redistribution and reorientation processes 
in homogeneous systems (dri, dφi = 0) the parameters Ψi are the same for all points of such a 
system and equal to their local values ψi, so that identity (9) goes over into a joint equation of the 
first and second laws of thermodynamics for closed systems: 

 
dU = Σi Ψi dΘi  = TdS – рdV .                                                (17) 

 
Since the variation of the coordinates Θi in an equilibrium system is caused by exclusively 

the external heat exchange (their internal sources are absent), the terms of this relationship 
characterize, respectively, the elementary heat exchange in the system đQ = TdS and the 
elementary expansion work đWex = рdV. In this case the parameters Ψi acquire the meaning of 
the absolute temperature T and absolute pressure p. In the more general case of spatially 
heterogeneous systems the parameters Ψi are, as will be shown hereinafter, the generalized 
local potentials ψi averaged by mass in all elements of the system.  

To clarify the meaning of the terms of the second sum in (9), we must take into account that 
they correspond to the redistribution processes running at constant parameters Θi and φi, i.e. with 
invariable direction of the unit vector ri. Then (∂Э/∂Zi) = Θi

–1(∂Э/∂ri) = -Fi/Θi = -Хi, then the Хi 
thermodynamic forces thus introduced are actually the specific forces in their usual (Newtonian) 
meaning, i.e. the forces Fi per unit of the value Θi they transfer. These are, in particular, the 
specific mass, bulk and surface forces, for which the Θi value is construed as, respectively, mass 
M, volume V and surface f of the body. This category also includes the Lorenz force Fе related to 
the electric charge Θе transferred. Using them enables representation of work by two equivalent 
expressions: 
 

đWi
е
 = Fi·dri = Хi·dZi.                                            (18) 

 
The work described by expression (18) may be mechanical, thermal, electrical, chemical, etc 

(depending on nature of the forces to overcome); external or internal (depending on where the 
forces arise – either in the system itself or outside); useful or dissipative (depending on what the 
work involves – either purposeful conversion of energy or its dissipation).  

Lastly, the terms of the third sum in (15) correspond to the reorientation processes running 
with constant Θi and ri. In this case Fi·dri = Fi·[dφi, ri], and the parameter Мi acquires the 
meaning of a torque from the force Fi: 
 



Мi  = Fi×Ri                                                                (19) 
 

This “torsion” torque is advisable to be called the “orientation” torque in the case it becomes 
zero when the direction of the force Fi coincides with the direction of the displacement vector Ri. 

The fundamental identity of energodynamics thus obtained is valid regardless of what causes 
the variation of the parameters Θi, ri and φi – either the external heat exchange or the internal 
(including relaxation) processes. Therefore it is applicable to any processes (both reversible and 
irreversible). At the same time it is most detailed of all the relationships connecting the 
parameters of spatially heterogeneous systems since it allows for any possible categories of 
processes running in such systems.  

Let us pay attemtion now to the fundamental difference between ordered and unordered 
works described in this expression by the variables of scalar and vector character. For this let us 
consider first some heterogeneous system consisting of two subsystems with the parameters Ψi′ , 
Θi′ and Ψi" , Θi". If such a system is homogeneous as a whole (Хi,Мi = 0) and isolated (dЭ = 0), 
expression (15) for it takes the form: 
 

dЭ = Ψi′dΘi ′ + Ψi "dΘi" = 0.                                                             (20) 
 

Hence it follows that in the process of redistribution of the energy carrier Θi between the 
parts of such a system dΘi′  = – dΘi" the value of the ith energy form Ui therein remains 
invariable, i.e. only a transfer of energy occurs in this form across the border between these 
parts. We called such an energy exchange running without energy form variation as the energy 
transfer for short. 

Another kind are the processes described by the terms of Хi·dZi type or Мi·dφi as their 
variety. If a system is heterogeneous, i.e. Хi = – ∇Ψi ≠ 0 and dZi = Θidri ≠ 0, then 

 
Хi·dZi = - Θi (dri,∇)Ψi = - Θi dΨi(ri),                                            (21) 

 
where Ψi(ri) is the potential of some part in the heterogeneous system, which varies with part-to-
part transfer within the system, i.e. should be considered as a function of system position ri in the 
field of the Ψi potential. Thus the terms Хi·dZi describe the ith energy form variations caused by 
the above redistribution of the energy carrier Θi if kept in the system as a whole. In accordance 
with the energy conservation law this is possible only as a result of other energy forms converted 
into the ith form. Therefore ordered work is always associated with the energy conversion 
process. 
 
 

5. Introduction of the rate and productivity of real processes in equations of thermokinetics 
 
Due to the fact that energodynamics rejects in its grounds the process idealization expressed 

in such notions as “quasi-static” (infinitely slow), “equilibrium” and “reversible” a possibility 
appears to introduce time as a logically consistent physical parameter into its equations. For that 
it is enough to rewrite identity (15) in the form containing total derivatives of the state 
parameters earlier introduced with respect to time t: 
 

dЭ/dt ≡ ΣiΨi dΘi/dt – ΣiFi·vi – Σi Мi⋅ωi .                          (22) 
 

Here vi ≡ dri/dt = еidri/dt – translation velocity of the energy carrier Θi; ωi ≡ dφi/dt – angular 
velocity of its reorientation (or rotation). In the particular case, when the parameter Θi means 
mass of a system, the values v and ω characterize its linear and angular velocity as a whole. For 
the future it is quite important to obtain the local statement of this identity true for any element 
of the continuum. For this purpose let us apply equation (15) first to the system where 



redistribution processes are absent. Then the second and the third sums in (15) disappear, and the 
identity becomes: 
 

dЭ/dt ≡ Σi Ψi dΘi /dt.                                                   (23) 
 

In the systems this equation represents the variation of the Θi
1) parameters is caused by 

exclusively the transfer of some amount of energy carrier across the system borders. This allows 
representing the behavior of these parameters in the time domain by a known expression: 
 

dΘi/dt = – ∫ji
e·df ,                                                    (24) 

 
where ji

e
 =ρivi – local density of flow of the energy carrier Θi through a vector element df of the 

closed surface f in the direction of external normal n; vi – velocity of energy carrier transfer 
through the system surface element df in stationary reference frame (Fig. 2). 
    Substituting (25) into (24) gives: 

 
         dЭ/dt = – Σi Ψi ∫ ji

e·df.                                          (25)  
 
      This equation is evidently a particular case of the more general expression 
 

dЭ/dt = –Σi ∫ψiji
e·df,                                           (26) 

 
when the local value ψi of generalized potential Ψi is the same for all system points and may 
therefore be factored outside the integral sign. The product ψiji is the ith component of the energy 
flow density je = Σi ψiji through an element df of the system surface f. Therefore changing in (25) 

to the integral taken over system volume as based on the 
Gauss-Ostrogradsky’s theorem we come to the expression 
for the law of energy conservation for an arbitrary 
continuum area, which was proposed by N. Umov in 1873: 
 

dЭ/dt = – ∫∇⋅jedV.                              (27) 
 

According to this expression the system energy 
variation equals the amount of energy having passed across 
the system borders for that particular time. Or according to 
Umov himself, “energy flow…is caused by energy 
admission or release a medium provides across its 

borders”. It should be noted that the validity of this statement is by no means restricted to the 
mechanical energy N. Umov meant.  

 je 
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x
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df 
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V 

Fig. 2. Energy Flow across System Borders 

This equation may be developed by representing the energy flow divergence ∇⋅je = Σi∇⋅(ψiji
e) 

as a sum of two terms Σi ψi ∇⋅ji
e
 + Σiji

e·∇ψi: 

dЭ/dt = – Σi ∫ψi ∇⋅ji
e
 dV + Σi∫ xi·ji

e dV,    (28) 
where  

xi ≡ –∇ψi                                      (29) 
 

                                                 
1) From the physical standpoint the value Θi that is actually the extensive measure of particular kind interaction (Energy) carrier 
is advisable to be called for short the Energy carrier. This will facilitate the understanding of many processes under investigation. 
 



is a local motive force of the ith process expressed as negative gradient of generalized potential 
and named in the theory of irreversible processes as the “thermodynamic force in its energetic 
representation” [4].  

Equation (29) enables clarifying the meaning of the “global” variables Ψi and Xi introduced 
earlier for a system in whole. Taking into account that volume or mass elements in continuums 
do not change their spatial orientation (dφi = 0) may be expressed in the form: 

 
dЭ/dt ≡ ΣiΨi dΘi/dt – Σi Xi·Ji ,                                         (30) 

where  
 

Ji ≡ (∂Zi/∂t)φ = Θiеidri/dt = Θivi ,                                      (31) 

i.e. are total flows of displacement (transfer) of the ith energy carrier Θi. 
These flows at dφi = 0 may be expressed in terms of their densities ji ≡ ρidri dt through the 

evident relationship: 
 

Ji ≡ Θidri /dt = ∫(dri/dt)dΘi = ∫ ji dV .                       (32) 
 

It is easy to see that the flows Ji differ in their dimensions from the more usual notion of flow 
rate and in their meaning as per (31) are closer to the “generalized momentum” Рi = Θivi of the ith 
energy carrier Θi for a system in whole. Such flows play an important role in many phenomena. 
These are, e.g., the vector flows of electric displacement in a system with the volume V defined 
by the product of the system free charge Θе and the velocity of its center displacement in the free 
charge redistribution processes. This is the value, to which the following parameters are 
proportional: magnetic field induction vector (Biot-Savart’s law), Thomson–Joule heats in 
conductors and thermo-elements, electromagnetic force driving a conductor with current 
(Ampere’s law), etc. We will hereinafter be referring to them time and again when dealing with 
the transfer and conversion of energy in any forms, which will confirm the necessity and 
usefulness of generalizing the Maxwell’s displacement current concept to phenomena of other 
nature.  

To find the relation between the “global” (pertaining to a system in whole) and the local 
thermodynamic forces xi, let us take into account that the parameters Ψi in identity (15) are 
defined for the coordinates Zi being constant, i.e. for the difference ρi(r,t) – ( )i tρ invariable in all 
points of the system volume V. From this it follows that in the expression  
 

dΘi/dt = ∫ (dθi/dt) ρdV ,               (33) 
 

the specific parameters θi vary uniformly in all parts of the system, so that dθi/dt may be factored 
outside the integral sign. Hence,  
 

     Ψi = М–1 ∫ψidМ ,                                     (34) 
 

being the system mass-averaged value of the local potential ψi. Similarly proceeding from the 
invariance of the process power Ni = Xi·Ji when representing it in terms of the local and global 
parameters  
 

Xi = Ji
–1 ∫xi·ji dV,                                    (35) 

 



gives that the “global” thermodynamic force Xi is some averaged value of the local 
thermodynamic force xi ≡ –∇ψi.  

The relationship thus obtained between the local variables the field theories operate with and 
the thermodynamic parameters characterizing the state of a continuum in whole opens the 
possibility of describing their properties from the positions of energodynamics. In this case 
particular importance is attached to introducing in thermodynamic equations the most significant 
for natural science in whole concepts of flows Ji,ji as generalized rates of the transfer processes 
and the concept of power (capacity) of the energy conversion process in a whole system Ni = 
Xi·Ji and in its unit volume xi·ji. It should be noted that the notion of capacity refers to only the 
useful energy conversion processes and, therefore, could not appear in the depths of the theory of 
irreversible processes restricted to consideration of exclusively dissipative phenomena. On the 
contrary, all basic relationships of this theory will hereinafter be obtained as a consequence from 
energodynamics.  

This is enough in principle to construct a unitary theory of real processes enabling 
investigation of any systems (simplex and complex, closed and open, homogeneous and 
heterogeneous, isolated and non-isolated, tending to and omitting equilibrium) not outstepping 
the strict applicability of its primary concepts.  
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