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Abstract

We propose a preliminary framework that engages iso-triplex numbers and deforma-
tion order parameters to encode the spatial states of Iso Open Topological Strings (Iso-
OTS) for fermions and the temporal states of Iso Closed Topological Strings (Iso-CTS)
for bosons, where space and time are iso-dual. The objective is to introduce an elemen-
tary Topological Iso-String Theory (TIST) that complies with the holographic principle
and fundamentally represents the twisting, winding, and deforming of helical, spiral, and
vortical information structures—by default—for attacking superfluidic motion patterns
and energy states with iso-topic lifting. In general, these preliminary results indicate a
cutting-edge, flexible, consistent, and powerful iso-mathematical framework with con-
siderable representational capability that warrants further examination, collaboration,
construction, and discipline.
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1 Introduction
String theory is an active research framework in particle physics that

aims to unify quantum mechanics and general relativity [1, 2]. The theory
posits that the elementary particle states and interactions of our universe
can be encoded as 1D oscillating lines, namely strings [1, 2]. In short,
everything is theoretically well-defined in terms of vibrations and harmonics
[1, 2]—a powerful, elegant, and beautiful idea [3]. In one context, string
theory has evolved to be conceptually straightforward because today there
are two general types of strings: open and closed [3, 4]. A closed string is a
string that has no end-points, and therefore is topologically equivalent to a
circle [3, 4]. Whereas an open string, on the other hand, has two end-points,
and is therefore topologically equivalent to a line interval [3, 4]. Interactions
between open strings can always result in closed strings [4]. Unfortunately,
the existing mathematical framework that is designed to encode the string
states is remarkably complex because it operates within 11D space-time [3];
so it cannot be directly verified in laboratory experiments and therefore,
cannot withstand the heat of rigorous scientific scrutiny [5, 6]. Moreover,
some argue that string theory is not even science [6, 7, 8].

It is known that helices, spirals, and vortices are non-linear structures
that are fundamental to nature. For example, helical patterns are present in
biological structures such as DNA and amino-acid sequences [9, 10, 11, 12,
13, 14, 15], while spiral and vortical patterns are inherent to super-current
[16, 17], Bose-Einstein condensates [18, 19, 20], tornadoes [21, 22, 23], cy-
clones [24, 25, 26], and large-scale configurations such as galaxies and super-
massive black holes [27, 28, 29, 30, 31]. The imperative need for this mode of
non-linear architecture is furthermore exemplified by the topology twisting
of Inopin [32], the hubius helix of Hu [33], and the helical strings of Tordova
[34, 35]. Thus, given that string theory has been proposed for grand unifi-
cation [1, 2, 3, 4], the said observations seem to indicate that, at minimum,
an acceptable string-based unification candidate must be able to encode
the energy and resonance state space of these non-linear structures so its
interactional representation and predictive capability can be experimentally
tested in a 4D space-time laboratory. So why does modern string theory
fail to meet this critical scientific requirement? In particular, what is the
underlying mechanistic assertion in the theory’s conceptual and mathemat-
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ical framework that generates this need for 11D complexity? How does this
mysterious contention render the theory inapplicable to the laboratory?

In this preliminary paper, we launch an assault against the said incon-
sistencies of conventional string theory [5, 7, 8]: we begin to apply Santilli’s
iso-numbers [36, 37, 38, 39, 40, 41] and Inopin’s holographic ring (IHR)
topology [42, 43, 44] to initiate the construction of new iso-strings with iso-
triplex numbers in the iso-dual 4D space-time of [45]. For this, the IHR en-
codes the dimension of time, which is an iso-metrically embedded topological
sphere equipped with deformation order parameters that acquires a Berry
phase and is simultaneously dual to two spatial 3-branes [42, 43, 44, 45] for
iso-topic lifting [36, 37, 38, 39, 40, 41]. Here, the objective is to initiate
the construction of an elementary TIST that complies with the holographic
principle and fundamentally encodes the twisting, winding, and deforming
of the helical, spiral, and vortical structures in nature. Therefore, the first
step is to state our hypothesis: using iso-numbers [36, 37, 38, 39, 40, 41, 45]
and the IHR topology [42, 43, 44, 45], it may be possible to assemble a TIST
that encodes helical, spiral, and vortical structures by default (with topolog-
ical deformation order parameters for winding and twisting) to reduce the
complexity of conventional string theory from 11D to 4D so it can be ex-
perimentally verified in the laboratory. In other words, we argue that if
these non-linear topological structures and iso-topic liftings are not built
into the theory from the beginning, then the string’s energy and resonance
state space will inevitably become overly complicated because the under-
lying mathematical framework and encoding methodology is not designed
to specifically handle the abundance of helical, spiral, and vortical features
of nature. This hypothetically implies that conventional string theory im-
plementations may be ill-equipped to deal with these non-linear scenar-
ios simply because they lack the proper topological platform (with built-in
winding and twisting). Thus, if one attempts to deploy 1D oscillating lines
and circles to represent, for example, the above listed non-linear patterns
in nature, one will immediately encounter convolution because the frame-
work does not naturally account for the inherent and continual topological
twisting, winding, deforming, and lifting properties from-the-start. Hence,
when facing the “unification beast” with a string-based attack, we are in-
evitably confronted with the illusion of extreme representational complexity
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that exceeds 4D space-time by multiple magnitude orders (i.e. 11D space-
time) because it is inherently difficult to encode, for example, a vortex with
a 1D oscillating line and/or circle, due to their structural limitations (i.e.
they do not support topological twisting, winding, deforming, and lifting
by default). To date, the coordinated assault on such monolithic creatures
has resulted in an 11D space-time framework because, historically, string
theorists have deemed it necessary to include additional degrees of freedom
too sufficiently encode the (twisting, winding, and deforming) state space.
Thus, it is difficult (if not impossible) to experimentally verify an 11D string
theory in a conventional 4D space-time laboratory. As a result, string the-
ory remains a highly controversial research framework and faces substantial
opposition [5, 7, 8].

Therefore, our attack aims to support the conventional string theory ap-
proach [1, 2, 3, 4] by identifying a 4D TIST that circumvents the acknowl-
edged 11D string theory complexity and limitations [5, 7, 8]. In particular,
we will demonstrate that the preliminary 4D TIST approach that accounts
for the twisting, winding, and deforming of natural structures by default is
achieved by:

1. upgrading the conventional open string and closed string models in
11D space-time [1, 2, 3, 4] with OTS and CTS models built from
triplex numbers in the dual 4D space-time IHR topology [42, 43, 44];
and

2. further upgrading the OTS and CTS models in the dual 4D space-time
IHR topology [42, 43, 44] by iso-topically lifting [36, 37, 38, 39, 40, 41]
them to Iso-OTS and Iso-CTS models built with iso-triplex numbers
in the iso-dual 4D space-time IHR topology [45].

We prepare for our exploration with Section 2, where we initialize the
dual 4D space-time IHR topology [42, 43, 44] locations for a quark-antiquark
pair that will be represented with an OTS and CTS. Next, we launch
with Section 3, where we introduce, define, and assemble a preliminary
OTS, which comprises two topological components for encoding the spatial
fermionic states: a thin flux tube and a circulating super-current vortex. For
this, we provide one brief example on how the Fibonacci sequence may be
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applied to interpret energy and resonance states of the OTS. Subsequently,
in Section 4, we introduce, define, and assemble a preliminary CTS, which
comprises two topological components for encoding the temporal bosonic
states: the IHR [42, 43, 44, 45] and a circulating helix. Afterwards, in Sec-
tion ??, we iso-topically lift the dual 4D space-time IHR topology, OTS, and
CTS to define an iso-dual 4D space-time IHR topology, Iso-OTS, and Iso-
CTS, respectively. Finally, we terminate our investigation with the brief
discussion of Section 6, where we recapitulate our hypothesis, procedure,
and results, and suggest future modes of research.

2 Initializing the quark-antiquark pair and its antisymmetric wave-
function
Here, we prepare for the initial topological string theory definitions by

using the work of [42, 43, 44, 45] to encode the triplex locations for the
quark-antiquark pair in the dual 4D space-time IHR topology.

Let X be the set of complex numbers and 2D Position-Point State Space
(2D-PPSS) for the dual 3D space-time IHR topology, which is embedded in
the set of triplex numbers and 3D Position-Point State Space (3D-PPSS) Y
for the dual 4D space-time IHR topology, such that X ⊂ Y [42, 43, 44, 45]—
see Figure 1. The T 1 of eq. (16) in [45] is the 1-sphere IHR that is iso-
metrically embedded in both X and Y because T 1 ⊂ X and T 1 ⊂ Y
[42, 43, 44, 45], such that T 1 is the great circle of the 2-sphere IHR T 2 ⊂ Y
of eq. (33) in [45], where both T 1 and T 2 have the amplitude-radius ε. Here,
we will simultaneously initialize a quark-antiquark pair that is confined to
both T 1 and T 2. Thus, a complex number and 2D Position-Point State
(2D-PPS) ~x ∈ X is defined in eq. (6) of [45] as

x = ~x = ~xR + ~xI = (~x) = (|~x|, 〈~x〉)P = (~xR, ~xI)C , ∀~x ∈ X, (1)

where ~x is a dual 2D Cartesian-polar coordinate-vector state, such that (~x) =
(|~x|, 〈~x〉)P is the 2D polar coordinate-vector state and (~xR, ~xI)C is the 2D
Cartesian coordinate-vector state [45]. Moreover, given that X ⊂ Y , the
~x ∈ X of eq. (1) simultaneously refers to a triplex number and 3D Position-
Point State (3D-PPS) ~y ∈ Y because ~xR = ~yR and ~xI = ~yI, which is defined
in eq. (17) of [45] as

y = ~y = ~yR + ~yI + ~yZ = (~y) = (|~y|, 〈~y〉, [~y])S = (~yR, ~yI, ~yZ)C , ∀~y ∈ Y, (2)
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Fig. 1: The 2D-PPSS X is embedded in the 3D-PPSS Y , so X ⊂ Y , such that X and

Y share the same yR-axis and yI-axis, but Y contains the additional yZ-axis [43, 44, 45].

where ~y is a dual 3D Cartesian-polar coordinate-vector state, such that
(|~y|, 〈~y〉, [~y])S is the 3D spherical (extended polar) coordinate-vector state
and (~yR, ~yI, ~yZ)C is the 3D Cartesian coordinate-vector state [45].

We let q be a quark, namely a non-Abelian color-electric-magnetic quark
monopole from [42], where eq. (35) in [43] defines q’s 3D-PPS ~q ∈ T 1 ⊂
T 2 ⊂ Y as

q : ~q ≡ ~qR + ~qI + ~qZ = (~q) = (|~q|, 〈~q〉, [~q])S = (~qR, ~qI, ~qZ)C . (3)

Next, we let q̄ be the antiquark that is the antiparticle of q, namely a non-
Abelian anticolor-electric-magnetic antiquark antimonopole from [42], where
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eq. (35) in [43] similarly defines q̄’s 3D-PPS ~̄q ∈ T 1 ⊂ T 2 ⊂ Y as

q̄ : ~̄q ≡ ~̄qR + ~̄qI + ~̄qZ = (~̄q) = (|~̄q|, 〈~̄q〉, [~̄q])S = (~̄qR, ~̄qI, ~̄qZ)C . (4)

The pair qq̄ represents a color-electric-magnetic dipole [42]. For eqs. (3–4),
the quark-antiquark 3D-PPS antisymmetric location duality constraints of
eqs. (72–73) in [43] are written for the qq̄ pair as

~qR + ~qI + ~qZ = −~̄qR − ~̄qI − ~̄qZ
|~q| = |~̄q|
〈~q〉 = 〈~̄q〉 ± π
[~q] = [~̄q]± π
~qR = −~̄qR
~qI = −~̄qI
~qZ = −~̄qZ ,

(5)

where the encoded qq̄ states adhere to the uniformly-arranged “phase-OPS
and inclination-OPS antiferromagnetic ordering constraints” of eq. (74) in
[43]

〈~ψJ(~q)〉 = 〈~ψJ(~̄q)〉 ± π

[~ψJ(~q)] = [~ψJ(~̄q)] ± π
(6)

for |~ψJ(~q)| = |~ψJ(~̄q)| with Rashba spin-orbit coupling [46]. Eq. (6) is signifi-
cant because it employs the Rashba spin-orbit coupling [46] to correlate the
magnetic 3D-OPSs and thereby simplify the overall 3D representation of the
antisymmetric wavefunction [42, 43]. Therefore, eqs. (3–6) satisfy the rele-
vant 3D wavefunction states of eqs. (75–83) in [43] and the 3D CPT-theorem
implementation of eqs. (84–86) in [43]. Hence, ~q, ~̄q ∈ T 1 ⊂ T 2 ⊂ Y are
equidistant from the origin-point O ∈ Y− of [43], such that the amplitude-
radius of T 1 and T 2 is

ε = |~q| = |~̄q|, (7)

where the 3D Cartesian distance for qq̄’s geometrical line segment ~q~̄q is
defined as

d(~q, ~̄q) = dqq̄ =

√
(~̄qR − ~qR)2 + (~̄qI − ~qI)2 + (~̄qZ − ~qZ)2 = |~q|+ |~̄q|, (8)

so O ∈ Y− is the “mid 3D-PPS” of ~q~̄q.
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Fig. 2: The qq̄ dipole is confined to T 1 (the great circle of T 2) in the dual 4D space-time

IHR topology [42, 43, 44, 45].

At this point, we’ve initialized the 3D-PPSS and 3D-OPSS for the qq̄
dipole that is confined to the IHR T 1—see Figure 2—so we are ready to
proceed with the topological string construction.

3 Open topological strings for fermion spatial states
Here, we introduce, define, and assemble an OTS and its spatial states

for the fermion features of the qq̄ dipole confined to T 1 using the triplex
encoding framework of [43, 44, 45]. In general, the OTS contains two distinct
information sub-structures: the

1. Open Topological String Thin Flux Tube (OTS-Tube), a linear infor-
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mation sub-structure; and

2. Open Topological String Super-Current Vortex (OTS-Vortex), a non-
linear information sub-structure.

Here, we identify, construct, and discuss both OTS sub-structures and their
interdependence.

3.1 Open topological string flux tubes
The OTS-Tube for the qq̄ dipole is defined as a topological 1D line in-

terval space of 3D-PPSs in a 3D-PPSS sub-space, namely

S̄~q,~̄q ⊂ Y− ≡ S̄(~q, ~̄q) ⊂ Y− ≡ {~y ∈ Y− : ~y ∈ ~q, ~̄q}
≡ {~y ∈ Y− : 0 < |~y| < |ε|, 〈~y〉 = 〈~q〉, [~y] = [~q]} ∪ {O} ∪
{~̄y ∈ Y− : 0 < |~̄y| < |ε|, 〈~̄y〉 = 〈~̄q〉, [~̄y] = [~̄q]}

(9)

which is the ordered continuous 3D-PPS set and 3D-PPS sub-surface for

the interval (~q, ~̄q) along the 1D line segment set ~q, ~̄q, where the order of the
particle arguments ~q and ~̄q determine the order of S̄~q,~̄q. Note that S̄~q,~̄q does
not actually include the 3D-PPSs ~q and ~̄q, but it is said to encode qq̄ dipole
spatial states (in subsequent sections, we will show why this exclusion and
representation is meaningful).

Now, due to the fact that Y− and ~q, ~̄q are both continuous, and because
S̄~q,~̄q is a 3D-PPS sub-space of Y−, then the OTS-Tube 3D-PPS cardinality
is expressed as

|S̄~q,~̄q| ≡ |S̄(~q, ~̄q)| ≡ ∞ (10)

for an infinite number of 3D-PPSs within S̄~q,~̄q, even though the OTS-Tube
3D-PPS length is expressed as

||S̄~q,~̄q|| ≡ ||S̄(~q, ~̄q)|| ≡ dqq̄ (11)

for the finite 3D Cartesian distance of eq. (8), which includes ~q, ~̄q ∈ T 1 as
well. The cardinality |S̄~q,~̄q| of eq. (10) is infinite because it is continuous
and smooth sub-space of mathematical objects. From this, it is evident that
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O ∈ Y− is the mid 3D-PPS of S̄~q,~̄q, so we split S̄~q,~̄q into the dual OTS-Tube
3D-PPS sub-spaces

S̄O,~q ⊂ S̄~q,~̄q ≡ S̄(O, ~q) ⊂ S̄(~q, ~̄q)
≡ {~y ∈ S̄(~q, ~̄q) : 0 < |~y| < |ε|, 〈~y〉 = 〈~q〉, [~y] = [~q]} (12)

for the “left-handed” or “quark-handed” OTS-Tube 3D-PPS sub-space,
namely the Quark-OTS-Tube, and

S̄O,~̄q ⊂ S̄~q,~̄q ≡ S̄(O, ~̄q) ⊂ S̄(~q, ~̄q)
≡ {~̄y ∈ S̄(~q, ~̄q) : 0 < |~̄y| < |ε|, 〈~̄y〉 = 〈~̄q〉, [~̄y] = [~̄q]} (13)

for the “right-handed” or “antiquark-handed” OTS-Tube 3D-PPS sub-space,
namely the Antiquark-OTS-Tube, of the ordered 3D-PPS subset intervals
(O, ~q) and (O, ~̄q), respectively. For notational preference, we may opt to
use

S̄~q ≡ S̄O,~q ≡ S̄(O, ~q) (14)

S̄~̄q ≡ S̄O,~̄q ≡ S̄(O, ~̄q) (15)

for simplicity. Thus, for the Quark-OTS-Tube and the Antiquark-OTS-
Tube the infinite cardinalities are

|S̄~q| ≡ |S̄~̄q| ≡ 1
2
|S̄~q,~̄q| ≡ ∞ (16)

and the finite lengths are

||S̄~q|| ≡ ||S̄~̄q|| ≡ 1
2
||S̄~q,~̄q|| ≡ 1

2
dqq̄. (17)

Hence, we recapitulate that

S̄~q ∪ {O} ∪ S̄~̄q ≡ S̄~q,~̄q

S̄~q ∩ {O} ∩ S̄~̄q ≡ ∅
(18)

and
S̄[0, ~q] ∪ S̄[0, ~̄q] ≡ S̄[~q, ~̄q] ≡ {~q} ∪ S̄~q,~̄q ∪ {~̄q}

S̄[0, ~q] ∩ S̄[0, ~̄q] ≡ {O}

S̄(0, ~q] ∩ S̄(0, ~̄q] ≡ ∅.

(19)
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Therefore, because of the quark-antiquark duality and baryon-antibaryon
duality of [42, 43], the Quark-OTS-Tube and the Antiquark-OTS-Tube are
also dual, so we express the OTS-Tube 3D-PPS duality functions

h~q→~̄q(S̄) : S̄~q → S̄~̄q

h~̄q→~q(S̄) : S̄~̄q → S̄~q.
(20)

Thus, to further exemplify the duality of eq. (20), we utilize the similarity
of eq. (5) to apply the 3D-PPS antisymmetric location duality constraints
of eqs. (72–73) in [43] to S̄~q,~̄q to establish the OTS-Tube 3D-PPS antisym-
metric duality constraints

~yR + ~yI + ~yZ = −~̄yR − ~̄yI − ~̄yZ
|~y| = |~̄y|
〈~y〉 = 〈~̄y〉 ± π
[~y] = [~̄y]± π
~yR = −~̄yR
~yI = −~̄yI
~yZ = −~̄yZ ,

(21)

∀~y ∈ S̄~q, ∀~̄y ∈ S̄~̄q, for the 3D-PPS parity-symmetry constraint of eq. (85)
in [43].

At this point, we’ve introduced, defined, and assembled the OTS-Tube
S̄~q,~̄q for the qq̄ dipole in Y that is confined to T 1, where S̄~q,~̄q comprises the
Quark-OTS-Tube S̄~q and Antiquark-OTS-Tube S̄~̄q, which are dual, inverse,
opposite, and reverse topological sub-structures that are interdependent—
all of this is consistent with the quark confinement topology and baryon-
antibaryon duality of [42, 43].

3.2 Open topological string super-current vortices
Here, we assemble the OTS-Vortex for the qq̄ dipole by equipping the

OTS-Tube S̄~q,~̄q with a 3D-OPS layer of fractional statistics for the “generic”
topological deformations of [43], which upgrades the framework of [42]. In
fact, as we will show, the OTS-Vortex actually comprises dual OTS-Vortices
that correspond to the Quark-OTS-Tube S̄~q and Antiquark-OTS-Tube S̄~̄q.
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Now, from eq. (50) in [43] we know that Y can be assigned a 3D-
OPS layer for topological deformations. Thus, because S̄~q,~̄q ⊂ Y , we know
that eq. (50) in [43] applies to S̄~q,~̄q. Hence, the first step is to define the
topological 1D line interval space of 3D-OPSs to S̄~q,~̄q as

~S~q,~̄q ≡ ~S(~q, ~̄q) ≡
⋃

~y∈S̄(~q,~̄q)

~ψ→(~y), (22)

which assigns S̄~q,~̄q’s 3D-OPS layer for topological deformations, where ~ψ→(~y)

is the 3D-OPS in the 3D-OPSS ~Φ→(~y) at ~y, such that ~ψ→(~y) ∈ ~Φ→(~y); ~S~q,~̄q
of eq. (22) is called the OTS-Vortex Foundation, which is a continuous

ordered 3D-OPS set, such that ~S~q,~̄q’s infinite cardinality is

|~S~q,~̄q| ≡ |S̄~q,~̄q| ≡ ∞, (23)

and ~S~q,~̄q’s finite length is

||~S~q,~̄q|| ≡ ||S̄~q,~̄q|| ≡ dqq̄. (24)

The cardinalities and lengths of eqs. (23–24) are dual and equivalent be-

cause each 3D-PPS of S̄~q,~̄q is assigned a corresponding 3D-OPS in ~S~q,~̄q to
encode a physical deformation. Figure 3 depicts a 3D-OPS layer assignment
to the OTS-Tube S̄~q,~̄q for topological deformations; this method is used to

build the OTS-Vortex Foundation ~S~q,~̄q.

Therefore, the 3D-PPSs of S̄~q,~̄q and the corresponding 3D-OPSs of ~S~q,~̄q
are sequentially summed to define the OTS-Vortex for the qq̄ dipole, which
is a topological 3D vortex space of 3D-OPSs, as

S̃~q,~̄q ⊂ Y− ≡ S̃(~q, ~̄q) ⊂ Y− ≡
⋃

~y∈S̄~q,~̄q

~y + ~ψ→(~y) ≡
⋃

~y∈S̄~q,~̄q

γ(~y), (25)

where
~γ ≡ γ(~y) ≡ ~y + ~ψ→(~y), ∀~y ∈ S̄~q,~̄q, ∀~ψ→(~y) ∈ ~S~q,~̄q, (26)

such that ~γ ⊂ S̃~q,~̄q ⊂ Y−. At this point, we do not know the exact structure,

shape, or length of S̃~q,~̄q because it depends on a number of features (that
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Fig. 3: A 3D-OPS layer is assigned to the interval (~q, ~̄q) along the 1D line segment set

~q, ~̄q, which will become the OTS-Tube S̄~q,~̄q with topological deformations that form the

OTS-Vortex Foundation ~S~q,~̄q for the OTS-Vortex S̃~q,~̄q.
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we will soon discuss), but we do know that it must somehow wind around
S̄~q,~̄q, has some finite length ||S̃~q,~̄q||, such that ||S̃~q,~̄q|| > dqq̄, and bares an

infinite cardinality |S̃~q,~̄q| ≡ ∞—for now, these preliminary and approximate
constraints are all that we need to be aware of.

Next, we split the OTS-Vortex Foundation ~S~q,~̄q into dual sub-structures,
just as we did with S̄~q,~̄q in the previous section, to ultimately demonstrate
that they are inverses, opposites, and reverses for compliance with [42, 43].

Thus, we split ~S~q,~̄q into the dual OTS-Vortex Foundation 3D-OPS sub-spaces

~SO,~q ⊂ ~S~q,~̄q ≡ ~S(O, ~q) ⊂ ~S(~q, ~̄q) ≡
⋃

~y∈S̄O,~q

~ψ→(~y) (27)

for the left-handed or quark-handed OTS-Vortex Foundation 3D-OPS sub-
space, namely the Quark-OTS-Vortex Foundation, and

~SO,~̄q ⊂ ~S~q,~̄q ≡ ~S(O, ~̄q) ⊂ ~S(~q, ~̄q) ≡
⋃

~̄y∈S̄O,~̄q

~ψ→(~̄y) (28)

for the right-handed or antiquark-handed OTS-Vortex Foundation 3D-OPS
sub-space, namely the Antiquark-OTS-Vortex Foundation. Additionally, for
notational preference, we may opt to use

~S~q ≡ ~SO,~q ≡ ~S(O, ~q) (29)

~S~̄q ≡ ~SO,~̄q ≡ ~S(O, ~̄q) (30)

for simplicity. Subsequently, we rewrite eq. (20) to express the OTS-Vortex
Foundation 3D-OPS duality functions

h~q→~̄q(~S) : ~S~q → ~S~̄q

h~̄q→~q(~S) : ~S~̄q → ~S~q,

(31)

for which eq. (21) is translated to define the OTS-Vortex Foundation 3D-
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OPS antisymmetric duality constraints

~ψ→(~y)R + ~ψ→(~y)I + ~ψ→(~y)Z = −~ψ→(~̄y)R − ~ψ→(~̄y)I − ~ψ→(~̄y)Z
|~ψ→(~y)| = |~ψ→(~̄y)|
〈~ψ→(~y)〉 = 〈~ψ→(~̄y)〉 ± π
[~ψ→(~y)] = [~ψ→(~̄y)]± π
~ψ→(~y)R = −~ψ→(~̄y)R
~ψ→(~y)I = −~ψ→(~̄y)I
~ψ→(~y)Z = −~ψ→(~̄y)Z ,

(32)

∀~ψ→(~y) ∈ ~S~q, ∀~ψ→(~̄y) ∈ ~S~̄q.
Consequently, we split the OTS-Vortex S̃~q,~̄q into dual sub-structures,

just as we did with ~S~q,~̄q for compliance with [42, 43]. Thus, we split S̃~q,~̄q
into the dual OTS-Vortex 3D-PPS sub-spaces

S̃O,~q ⊂ S̃~q,~̄q ≡ S̃(O, ~̄q) ⊂ S̃(~q, ~̄q) ≡
⋃

~y∈S̄O,~̄q

~y + ~ψ→(~y) ≡
⋃

~y∈S̄O,~q

γ(~y) (33)

for the left-handed or quark-handed OTS-Vortex 3D-PPS sub-space, namely
the Quark-OTS-Vortex, and

S̃O,~̄q ⊂ S̃~q,~̄q ≡ ~S(O, ~̄q) ⊂ S̃(~q, ~̄q) ≡
⋃

~̄y∈S̄O,~̄q

~̄y + ~ψ→(~̄y) ≡
⋃

~̄y∈S̄O,~̄q

γ(~̄y) (34)

for the right-handed or antiquark-handed OTS-Vortex 3D-PPS sub-space,
namely the Antiquark-OTS-Vortex. Additionally, for notational preference,
we may opt to use

S̃~q ≡ S̃O,~q ≡ S̃(O, ~q) (35)

S̃~̄q ≡ S̃O,~̄q ≡ S̃(O, ~̄q) (36)

for simplicity. Subsequently, we rewrite eq. (20) to express the OTS-Vortex
3D-PPS duality functions

h~q→~̄q(S̃) : S̃~q → S̃~̄q

h~̄q→~q(S̃) : S̃~̄q → S̃~q,

(37)
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for which eq. (21) applies to define the OTS-Vortex 3D-PPS antisymmetric
duality constraints

~γR + ~γI + ~γZ = −~̄γR − ~̄γI − ~̄γZ
|~γ| = |~̄γ|
〈~γ〉 = 〈~̄γ〉 ± π
[~γ] = [~̄γ]± π
~γR = −~̄γR
~γI = −~̄γI
~γZ = −~̄γZ ,

(38)

∀~γ ∈ S̃~q, ∀~̄γ ∈ S̃~̄q, for the 3D-PPS P-symmetry constraint of eq. (85) in
[43].

The spontaneously selected superfluid order parameters [42, 43] that

comprise ~S~q and ~S~̄q transform in such a way that S̃~q and S̃~̄q must have
a vortical flow motion pattern about S̄~q and S̄~̄q, respectively—this is a
fundamental and paramount constraint of our developing OTS. The vorticity
of S̃~q and S̃~̄q may be rotational or irrotational, depending on the desired

application. See Figure 4 for an example depiction of S̃~q,~̄q, along with ~S~q,~̄q
and S̄~q,~̄q. Furthermore, the OTS’s flexibility grants us the option to equip

S̃~q,~̄q with its own 3D-OPS layer for an additional degree of representation

because S̃~q,~̄q ⊂ Y− and we can always equip sub-structures of Y with 3D-
OPSs.

At this point, we’ve introduced, defined, and assembled a preliminary
construction of the OTS-Vortex S̃~q,~̄q from the OTS-Vortex Foundation ~S~q,~̄q
and the OTS-Tube ~S~q,~̄q for the qq̄ dipole in Y that is confined to T 1, where

S̃~q,~̄q comprises the Quark-OTS-Vortex S̃~q and Antiquark-OTS-Vortex S̃~̄q,
which are dual, inverse, opposite, and reverse topological sub-structures
that are interdependent for encoding fermion spatial states—all of this is
consistent with the quark confinement topology and baryon-antibaryon du-
ality of [42, 43, 44].

3.3 A Fibonacci example application of open topological strings
Now, lets stop for a moment to consider one simple example on how

one could conceivably construct and interpret some of S̃~q,~̄q’s energy and
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Fig. 4: An example depiction of the OTS-Tube S̄~q,~̄q, the OTS-Vortex Foundation ~S~q,~̄q,

and the OTS-Vortex S̃~q,~̄q for the spatial states of the qq̄ dipole that is confined to T 1.

T 1 ⊂ Y is simultaneously dual to both Y− ⊂ Y and Y+ ⊂ Y 3-branes [42, 43, 44].
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resonance states in terms of the Fibonacci sequence and spiral.
First, suppose there exists the dual 3D-PPS sets

F̄~q ⊂ S̄~q ≡ {~y1, ~y2, ~y3, ~y5, ~y8, ...}

F̄~̄q ⊂ S̄~̄q ≡ {~̄y1, ~̄y2, ~̄y3, ~̄y5, ~̄y8, ...}
(39)

whose location elements satisfy the OTS-Tube 3D-PPS antisymmetric du-
ality constraints of eq. (21), with the additional “Fibonacci-scaled 3D-PPS
amplitude constraints”

|~y1| ≡ |~̄y1| ≡ 1
2
|~y2| ≡ 1

2
|~̄y2| ≡ 1

3
|~y3| ≡ 1

3
|~̄y3|

≡ 1
5
|~y5| ≡ 1

5
|~̄y5| ≡ 1

8
|~y8| ≡ 1

8
|~̄y8| ≡ ... ,

(40)

such that |~̄yn| ≤ dqq̄, the “uniform and dual 3D-PPS phase constraints”

〈~y1〉 ≡ 〈~̄y1〉 ± π ≡ 〈~y2〉 ≡ 〈~̄y2〉 ± π ≡ 〈~y3〉
≡ 〈~̄y3〉 ± π ≡ 〈~y5〉 ≡ 〈~̄y5〉 ± π ≡ 〈~y8〉
≡ 〈~̄y8〉 ± π ≡ ... ,

(41)

and the “uniform and dual 3D-PPS inclination constraints”

[~y1] ≡ [~̄y1]± π ≡ [~y2] ≡ [~̄y2]± π ≡ [~y3]
≡ [~̄y3]± π ≡ [~y5] ≡ [~̄y5]± π ≡ [~̄y8]
≡ [~̄y8]± π ≡ ... .

(42)

Second, suppose that for the Fibonacci-scaled dual 3D-PPSs of eq. (39)
there exist the corresponding dual 3D-OPS sets

~F~q ⊂ ~S~q ≡ {~ψ→(~y1), ~ψ→(~y2), ~ψ→(~y3), ~ψ→(~y5), ~ψ→(~y8), ...}

~F~̄q ⊂ ~S~̄q ≡ {~ψ→(~̄y1), ~ψ→(~̄y2), ~ψ→(~̄y3), ~ψ→(~̄y5), ~ψ→(~̄y8), ...}
(43)

whose topological deformation elements satisfy the OTS-Vortex Foundation
3D-OPS antisymmetric duality constraints of eq. (32), with the additional
“Fibonacci-scaled 3D-OPS amplitude constraints”

|~ψ→(~y1)| ≡ |~ψ→(~̄y1)| ≡ 1
2
|~ψ→(~y2)| ≡ 1

2
|~ψ→(~̄y2)|

≡ 1
3
|~ψ→(~y3)| ≡ 1

3
|~ψ→(~̄y3)| ≡ 1

5
|~ψ→(~y5)|

≡ 1
5
|~ψ→(~̄y5)| ≡ 1

8
|~ψ→(~y8)| ≡ 1

8
|~ψ→(~̄y8)|

≡ ... ,

(44)
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the “uniform and dual 3D-OPS phase constraints”

〈~ψ→(~y1)〉 ≡ 〈~ψ→(~̄y1)〉 ± π ≡ 〈~ψ→(~y2)〉 ≡ 〈~ψ→(~̄y2)〉 ± π
≡ 〈~ψ→(~y3)〉 ≡ 〈~ψ→(~̄y3)〉 ± π ≡ 〈~ψ→(~y5)〉
≡ 〈~ψ→(~̄y5)〉 ± π ≡ 〈~ψ→(~y8)〉 ≡ 〈~ψ→(~̄y8)〉 ± π
≡ ... ,

(45)

and the “uniform and dual 3D-OPS inclination constraints”

[~ψ→(~y1)] ≡ [~ψ→(~̄y1)]± π ≡ [~ψ→(~y2)] ≡ [~ψ→(~̄y2)]± π
≡ [~ψ→(~y3)] ≡ [~ψ→(~̄y3)]± π ≡ [~ψ→(~y5)]

≡ [~ψ→(~̄y5)]± π ≡ [~ψ→(~y8)] ≡ [~ψ→(~̄y8)]± π
≡ ... .

(46)

Thus, given the Fibonacci-based OTS-Tube and OTS-Vortex Founda-
tion constructions of eqs. (39–46), there exists the dual 3D-PPS sets

F̃~q ⊂ S̃~q ≡ {~γ1, ~γ2, ~γ3, ~γ5, ~γ8, ...}

F̃~̄q ⊂ S̃~̄q ≡ {~̄γ1, ~̄γ2, ~̄γ3, ~̄γ5, ~̄γ8, ...}
(47)

whose location elements satisfy the OTS-Vortex 3D-PPS antisymmetric du-
ality constraints of eq. (21), with the additional “Fibonacci-scaled 3D-PPS
amplitude constraints”

|~γ1| ≡ |~̄γ1| ≡ 1
2
|~γ2| ≡ 1

2
|~̄γ2| ≡ 1

3
|~γ3| ≡ 1

3
|~̄γ3|

≡ 1
5
|~γ5| ≡ 1

5
|~̄γ5| ≡ 1

8
|~γ8| ≡ 1

8
|~̄γ8| ≡ ... ,

(48)

the “uniform and dual 3D-PPS phase constraints”

〈~γ1〉 ≡ 〈~̄γ1〉 ± π ≡ 〈~γ2〉 ≡ 〈~̄γ2〉 ± π ≡ 〈~γ3〉
≡ 〈~̄γ3〉 ± π ≡ 〈~γ5〉 ≡ 〈~̄γ5〉 ± π ≡ 〈~γ8〉
≡ 〈~̄γ8〉 ± π ≡ ... ,

(49)

and the “uniform and dual 3D-PPS inclination constraints”

[~γ1] ≡ [~̄γ1]± π ≡ [~γ2] ≡ [~̄γ2]± π ≡ [~γ3]
≡ [~̄γ3]± π ≡ [~γ5] ≡ [~̄γ5]± π ≡ [~̄γ8]
≡ [~̄γ8]± π ≡ ... .

(50)
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The next step is to define S̃~q,~̄q’s flow vorticity in Y− at the Fibonacci-
scaled 3D-PPSs of eq. (47). Thus, the superfluidic motion velocity field
is defined using the triplex numbers of [43] for the S̃~q,~̄q’s Fibonacci-scaled
3D-PPSs of eq. (47) as

v(~γi) ≡ v(~γi)R + v(~γi)I + v(~γi)Z ≡ (v(~γi)R, v(~γi)I, v(~γi)Z)C
≡ (|v(~γi)|, 〈v(~γi)〉, [v(~γi)])S

(51)

with the duality constraints

v(~γi)R + v(~γi)I + v(~γi)Z ≡ −v(~̄γi)R − v(~̄γi)I − v(~̄γi)Z
|v(~γi)| ≡ |v(~̄γi)|
〈v(~γi)〉 ≡ 〈v(~̄γi)〉 ± π
[v(~γi)] ≡ [v(~̄γi)]± π
v(~γi)R ≡ −v(~̄γi)R
v(~γi)I ≡ −v(~̄γi)I
v(~γi)Z ≡ −v(~̄γi)Z ,

(52)

∀~γi ∈ F̃~q (and clearly ∀~̄γi ∈ F̃~̄q). Therefore, S̃~q’s flow vorticity at the
Fibonacci-scaled 3D-PPSs of eq. (47) is defined as

~ω(~γi) ≡
(

∂
∂~γiR

, ∂
∂~γiI

, ∂
∂~γiZ

)
× (v(~γi)R, v(~γi)I, v(~γi)Z)

≡
(
∂v(~γi)Z
∂~γiI

− ∂v(~γi)I
∂~γiZ

, ∂v(~γi)R
∂~γiZ

− ∂v(~γi)Z
∂~γiR

, ∂v(~γi)I
∂~γiR

− ∂v(~γi)R
∂~γiI

)
,

(53)

which is the curl of the velocity fields of eq. (51) and dual to S̃~̄q in accor-
dance to eq. (52). See Figure 5 for the depiction of this Fibonacci example
application of S̃~q,~̄q in Y−. Certainly, it is possible to express eq. (53) in the
triplex form of [43] with triplex multiplication.

Moreover, we again stress that this is only one Fibonacci sequence encod-
ing method among many possible methods. Therefore, it may be beneficial
to explore such alternatives in future research.

4 Closed topological strings for boson temporal states
Here, we introduce, define, and assemble a CTS and its temporal state

space for the boson features of the qq̄ dipole that is confined to the IHR
T 1 [42] using the triplex encoding framework of [43]. In general, the CTS
contains two distinct information sub-structures: the
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Fig. 5: One initial example on how to apply the Fibonacci sequence to interpret the

spatial energy and resonance states of S̃~q,~̄q for the qq̄ dipole that is confined to T 1, where

the Fibonacci-scaled 3D-PPSs of S̃~q,~̄q contain velocity field curl and flow vorticity for

superfluidic motion. This is a new and general idea that may have lots of encoding

applications to non-linear structures in nature, such as superconductors, spiral galaxies,

and more.
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1. Closed Topological String Ring (CTS-Ring), a non-linear information
sub-structure; and

2. Closed Topological String Helix (CTS-Helix), a non-linear information
sub-structure.

Here, we identify, construct, and discuss both CTS sub-structures and their
interdependence.

4.1 Closed topological string rings
Here, the 1-sphere IHR T 1 is relabeled as a CTS-Ring for notational

consistency: it’s definition is rewritten as

T̊~q,~̄q ≡ T̊ (~q, ~̄q) ≡ T 1 ≡ {~y ∈ Y : |~y| = ε = |~q| = |~̄q|}. (54)

Now, due to the fact that T̊~q,~̄q is continuous because it is a smooth 1-sphere
curve and a 3D-PPS sub-space of Y , then the CTS-Ring 3D-PPS cardinality
is expressed as

|T̊~q,~̄q| ≡ |T̊ (~q, ~̄q)| ≡ ∞ (55)

for an infinite number of 3D-PPSs within T̊~q,~̄q, even though the CTS-Ring
3D-PPS length is expressed as

||T̊~q,~̄q|| ≡ ||T̊ (~q, ~̄q)|| ≡ 2πdqq̄ ≡ 2πε (56)

for the finite circumference.
There is no need to try to figure out how to split T̊~q,~̄q into the dual

left-handed and right-handed components like we did with S̄~q,~̄q because the
relevant time-reversal and parity-symmetry transformations of eqs. (85–86)
in [43] have already been applied to demonstrate the existence of counter-
balancing 3D-PPSs along T̊~q,~̄q with opposite, inverse, and reverse features.

For example, in eq. (5) we recall that the 3D-PPSs ~q, ~̄q ∈ T̊~q,~̄q are “direc-

tionally separated” along T̊~q,~̄q by π in terms of both phase and inclination
[43]; this utilization of π is paramount to the work of [42, 43] and exem-
plifies a key property of nature. Therefore, if the 3D-PPSs ~q, ~̄q ∈ T̊ vecq,~̄q

are “directionally separated” along T̊~q,~̄q by π in this fashion, then certainly
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the OTS-Tube 3D-PPS antisymmetric duality constraints of eq. (21) ap-
ply to this context as CTS-Ring 3D-PPS antisymmetric duality constraints,
∀~y, ~̄y ∈ T̊~q,~̄q.

Hence, at this point, we’ve introduced, defined, and assembled the CTS-
Ring T̊~q,~̄q for the qq̄ dipole in Y that is indeed confined to T̊~q,~̄q ≡ T 1, where

counter-balancing 3D-PPSs along T̊~q,~̄q contain dual, inverse, opposite, and
reverse locations that are interdependent—all of this is consistent with the
quark confinement topology and baryon-antibaryon duality of [42, 43].

4.2 Closed topological string helices
Here, we assemble the CTS-Helix for the qq̄ dipole by equipping the CTS-

Ring T̊~q,~̄q with a 3D-OPS layer of fractional statistics for the “generic” topo-
logical deformations of [43], which upgrades the framework of [42]. In fact,
as we will show, the CTS-Helix is also consistent with the CPT-Theorem
implementation of [42, 43], where the topological deformations that form the
foundation of the CTS-Helix exhibit opposite, inverse, and reverse features
that are also directionally separated along T̊~q,~̄q by π.

Now, from eq. (50) in [43] we know that Y can be assigned a 3D-OPS
layer for topological deformations. Thus, because T̊~q,~̄q ⊂ Y , we know that

eq. (50) in [43] applies to T̊~q,~̄q. Hence, the first step is to define the topological

1-sphere of 3D-OPSs for T̊~q,~̄q as

~T~q,~̄q ≡ ~T (~q, ~̄q) ≡
⋃

~y∈T̊~q,~̄q

~ψ→(~y), (57)

which assigns T̊~q,~̄q’s 3D-OPS layer for topological deformations, where ~ψ→(~y)

is the 3D-OPS in the 3D-OPSS ~Φ→(~y) at ~y ∈ T̊~q,~̄q, such that ~ψ→(~y) ∈ ~Φ→(~y);
~T~q,~̄q of eq. (57) is called the CTS-Helix Foundation, which is a continuous

ordered 3D-OPS set, such that ~T~q,~̄q’s infinite cardinality is

|~T~q,~̄q| ≡ |T̊~q,~̄q| ≡ ∞, (58)

and ~T~q,~̄q’s finite circumference length is

||~T~q,~̄q|| ≡ ||T̊~q,~̄q|| ≡ 2πdqq̄ ≡ 2πε. (59)
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Figure 6 depicts a 3D-OPS layer assignment to the CTS-Ring T̊~q,~̄q for topo-
logical deformations—this method is used to build the CTS-Helix Founda-
tion ~T~q,~̄q for the CTS-Helix T̃~q,~̄q definition in the upcoming eq. (60).

Therefore, the 3D-PPSs of T̊~q,~̄q and the corresponding 3D-OPSs of ~T~q,~̄q
are sequentially summed to define the CTS-Helix T̃~q,~̄q for the qq̄ dipole,
which is a topological 3D helix space of 3D-OPSs, as

T̃~q,~̄q ⊂ Y ≡ T̃ (~q, ~̄q) ⊂ Y ≡
⋃

~y∈T̊~q,~̄q

~y + ~ψ→(~y) ≡
⋃

~y∈T̊~q,~̄q

γ(~y), (60)

where
~γ ≡ γ(~y) ≡ ~y + ~ψ→(~y), ∀~y ∈ T̊~q,~̄q, ∀~ψ→(~y) ∈ ~T~q,~̄q, (61)

such that ~γ ∈ T̃~q,~̄q ⊂ Y . At this point, we do not know the exact structure,

shape, or length of T̃~q,~̄q because it depends on a number of features (that
we will soon discuss), but we do know that it must somehow wind around
T̊~q,~̄q, has some finite length ||T̃~q,~̄q||, such that ||T̃~q,~̄q|| > 2πdqq̄, and bares an

infinite cardinality |T̃~q,~̄q| ≡ ∞—for now, these preliminary and approximate
constraints are all that we need to be aware of.

Now similarly to the T̊~q,~̄q case of Section 4.1, there is no need to try to

split ~T~q,~̄q or T̃~q,~̄q into the dual left-handed and right-handed components
because the relevant time-reversal and parity-symmetry transformations
of eqs. (85–86) in [43] apply to demonstrate the existence of counter-

balancing 3D-OPSs along ~T~q,~̄q, which result in the counterbalancing 3D-

PPSs along T̃~q,~̄q—both ~T~q,~̄q and T̃~q,~̄q have opposite, inverse, and reverse fea-
tures. For this, the OTS-Vortex Foundation 3D-OPS antisymmetric duality
constraints of eq. (32) apply to ~T~q,~̄q as CTS-Helix Foundation 3D-OPS anti-

symmetric duality constraints ∀~ψ→(~y), ~psi→(~̄y) ∈ ~T~q,~̄q because their phases
and inclinations are directionally separated by π. Similarly, the OTS-Vortex
3D-PPS antisymmetric duality constraints of eq. (38) apply to T̃~q,~̄q as CTS-

Helix 3D-PPS antisymmetric duality constraints ∀~γ, ~̄γ ∈ T̃~q,~̄q.
The spontaneously selected superfluid order parameters that comprise

~T~q,~̄q transform in such a way that T̃~q,~̄q must have a helicoidal flow mo-

tion pattern about T̊~q,~̄q, respectively—this is a fundamental and paramount
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Fig. 6: A 3D-OPS layer is assigned to the 1-sphere IHR T 1 (which has been relabeled as

the CTS-Ring T̊~q,~̄q for notation consistency, so T 1 ≡ T̊~q,~̄q) for topological deformations.

This method is used to build the CTS-Helix Foundation ~T~q,~̄q for the CTS-Helix T̃~q,~̄q.
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constraint of our developing CTS. Additionally, this framework’s flexibil-
ity grants us the option to further equip T̃~q,~̄q with its own 3D-OPS layer
for an additional degree of representation. In order to mathematically
implement and experimentally apply this concept of helicoidal flow, this
emerging model of T̃~q,~̄q requires further scientific collaboration, scrutiny,
and investigation—an excellent facet of exploration for future research. See
Figure 7 for an example depiction of T̃~q,~̄q, along with ~T~q,~̄q and T̊~q,~̄q.

At this point, we’ve introduced, defined, and assembled a preliminary
construction of the CTS-Ring T̊~q,~̄q, the CTS-Helix Foundation ~T~q,~̄q, and the

CTS-Helix T̃~q,~̄q for the qq̄ dipole in Y , where the counterbalancing features
are dual, inverse, opposite, and reverse topological sub-structures that are
interdependent for boson temporal states—all of this is consistent with the
quark confinement topology and baryon-antibaryon duality of [42, 43]. See
Table 1 for a summary of the preliminary topological string theory struc-
tures introduced in this paper.

Table 1: A summary of the topological string structures for the qq̄ dipole, which

include the OTS and CTS.
Name Symbol Composition

OTS-Tube S̄~q,~̄q 3D-PPS

OTS-Vortex Foundation ~S~q,~̄q 3D-OPS

OTS-Vortex S̃~q,~̄q 3D-PPS

CTS-Ring T̊~q,~̄q 3D-PPS

CTS-Helix Foundation ~T~q,~̄q 3D-OPS

CTS-Helix T̃~q,~̄q 3D-PPS

5 Initiating the iso-topic liftings
Finally, it is time to deploy Santilli’s iso-numbers [36, 37, 38, 39, 40, 45]

to iso-topically lift the OTS of Section 3 and the CTS of Section 4. For
this preliminary implementation, we follow Santilli’s iso-methodology [36,
37, 38, 39, 40, 45] and execute the following procedure:

1. First, we select some positive-definite iso-unit r̂ > 0 with the corre-
sponding inverse κ̂ = 1

r̂
> 0, which will be used to iso-topically lift the

triplex space Y (and all of its sub-spaces) to the iso-triplex space Y r̂
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Fig. 7: An example depiction of the CTS-Ring T̊~q,~̄q ≡ T 1, the CTS-Helix Foundation
~T~q,~̄q, and the CTS-Helix T̃~q,~̄q for the temporal states of the qq̄ dipole that is confined to

T̊~q,~̄q. T̊~q,~̄q ⊂ Y is simultaneously dual to both Y− ⊂ Y and Y+ ⊂ Y [42, 43].
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via the transition Y → Y r̂, such that the qq̄ dipole that is confined to
T 1 ⊂ Y is iso-topically lifted to the q̂ ˆ̄q iso-dipole that is confined to
T̂ 1|r̂ ⊂ Y r̂. We note that in this application, we use r̂ to lift both the
3D-PPSs and the 3D-OPSs, but we could optionally select different
iso-units for both cases.

2. Second, we use r̂ to iso-topically lift the OTS-Tube S̄~q,~̄q of eq. (9) via
the transition

δ(S̄~q,~̄q, r̂) : S̄~q,~̄q → S̄ r̂~q,~̄q (62)

to define the Iso-OTS-Tube S̄ r̂
~q,~̄q

, which similarly applies to the sub-

structures and inherent characteristics of eqs. (10–21); S̄~q,~̄q and S̄ r̂
~q,~̄q

are locally iso-morphic.

3. Third, we use r̂ to iso-topically lift the OTS-Vortex Foundation ~S~q,~̄q
of eq. (22) via the transition

δ(~S~q,~̄q, r̂) : ~S~q,~̄q → ~S r̂~q,~̄q (63)

to define the Iso-OTS-Vortex Foundation ~S r̂
~q,~̄q

, which similarly applies

to the sub-structures and inherent characteristics of eqs. (23–24) and

eqs. (27–32); ~S~q,~̄q and ~S r̂
~q,~̄q

are locally iso-morphic.

4. Fourth, we use r̂ to iso-topically lift the OTS-Vortex S̃~q,~̄q of eq. (25)
via the transition

δ(S̃~q,~̄q, r̂) : S̃~q,~̄q → S̃ r̂~q,~̄q (64)

to define the Iso-OTS-Vortex S̃ r̂
~q,~̄q

, which similarly applies to the sub-

structures and inherent characteristics of eqs. (33–38); S̃~q,~̄q and S̃ r̂
~q,~̄q

are locally iso-morphic.

5. Fifth, we use r̂ to iso-topically lift the CTS-Ring T̊~q,~̄q of eq. (54) via
the transition

δ(T̊~q,~̄q, r̂) : T̊~q,~̄q → T̊ r̂~q,~̄q (65)

to define the Iso-CTS-Ring T̊ r̂
~q,~̄q

, which similarly applies to the inherent

characteristics of eqs. (55–56); T̊~q,~̄q and T̊ r̂
~q,~̄q

are locally iso-morphic.
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6. Sixth, we use r̂ to iso-topically lift the CTS-Helix Foundation ~T~q,~̄q of
eq. (57) via the transition

δ(~T~q,~̄q, r̂) : ~T~q,~̄q → ~T r̂~q,~̄q (66)

to define the Iso-CTS-Helix Foundation ~T r̂
~q,~̄q

, which similarly applies

to the inherent characteristics of eqs. (58–59); ~T~q,~̄q and ~T r̂
~q,~̄q

are locally
iso-morphic.

7. Seventh, we use r̂ to iso-topically lift the CTS-Helix T̃~q,~̄q of eq. (60)
via the transition

δ(T̃~q,~̄q, r̂) : T̃~q,~̄q → T̃ r̂~q,~̄q (67)

to define the Iso-CTS-Helix T̃ r̂
~q,~̄q

, which similarly applies to the inher-

ent characteristics of eq. (61); T̃~q,~̄q and T̃ r̂
~q,~̄q

are locally iso-morphic.

At this point, we can update Table 1 to establish Table 2, which reflects
the preliminary TIST structures introduced in this paper.

Table 2: A summary of the TIST structures for the q̂ ˆ̄q iso-dipole, which include

the Iso-OTS and Iso-CTS.
Name Symbol Composition

Iso-OTS-Tube S̄ r̂
~q,~̄q

Iso-3D-PPS

Iso-OTS-Vortex Foundation ~S r̂
~q,~̄q

Iso-3D-OPS

Iso-OTS-Vortex S̃ r̂
~q,~̄q

Iso-3D-PPS

Iso-CTS-Ring T̊ r̂
~q,~̄q

Iso-3D-PPS

Iso-CTS-Helix Foundation ~T r̂
~q,~̄q

Iso-3D-OPS

Iso-CTS-Helix T̃ r̂
~q,~̄q

Iso-3D-PPS

6 Conclusion
In this preliminary investigation, we started by discussing some limiting

aspects of the conventional string theory which operates in the 11D space-
time framework [1, 2, 3, 4]. We listed numerous examples of structures in
nature that exhibit helical, spiral, and vortical patterns, and proposed that
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a string-based unification candidate must be able to encode such patterns
by default. From this, we proposed a hypothesis, which conjectured that
Santilli’s iso-numbers [36, 37, 38, 39, 40, 45] and the IHR [42, 43, 44, 45] may
enable us to construct a TIST in the iso-dual 4D space-time IHR topology,
which may serve as a topological upgrade to conventional string theory
[1, 2, 3, 4]. Consequently, we forged ahead and began to test this hypothesis
by engaging triplex numbers and topological deformation order parameters
to construct the OTS and CTS for a quark-antiquark dipole in the dual
4D space-time IHR topology [42, 43, 44, 45]. In doing so, we identified
one simple example on how the OTS energy and resonance states can be
quantified in terms of the well-known Fibonacci sequence for understanding
superfluidic motion velocity fields and flow vorticities. Subsequently, we
deployed the iso-triplex numbers to iso-topically lift the OTS and CTS to
the Iso-OTS and Iso-CTS, respectively, in the iso-dual 4D space-time IHR
topology [45].

The initial results of this venture are significant because they seem to
support our hypothesis, which aims to reveal the landscape of an alter-
native unification candidate with low-dimensional iso-mathematics. More
precisely, the topological iso-strings are cutting-edge structures that begin
to advance Santilli’s iso-numbers [36, 37, 38, 39, 40, 45] to new string-based
realms of application and exploration. Ultimately, we must develop this
TIST to such a degree so that it’s predictive and representational capabili-
ties may be tested with real-time astronomical data and high-energy physics
experiments. Hence, there is much work to be done because this emerging
TIST framework is still rudimentary and therefore requires further scrutiny,
collaboration, refinement, and generalization via the Scientific Method.
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