A NEW PERSPECTIVE OF THE TWIN PRIME CONJECTURE

Yibing Qiu
yibing.qiu@hotmail.com
"Innovation is not the product of logical thought, even though the final product is tied to a logical structure."

---------- Albert Einstein

The twin prime conjecture [1] is a beautiful open problem in Number Theory about primes, a pair of primes are called t win primes such as $\{11,13\},\{29,31\}$ or $\{101,103\}$ of the form $\{\mathrm{p}, \mathrm{p}+2\}$, and the twin prime conjecture states that there exist infinitely many primes p such that $\mathrm{p}+2$ is also prime [1].

Since p and $p+2$ all is odd primes in every pair of twin primes of the form $\{p, p+2\}$, thus, there must be $2 \mid p+1$ and $p+1 \geq 4$, assume $p+1=2 n, n \in N$; then there be $2 n \geq 4, n \geq 2$, $\mathrm{p}=2 \mathrm{n}-1, \mathrm{p}+2=2 \mathrm{n}+1$, and $(2 \mathrm{n}+1)=(2 \mathrm{n}-1)+2$, therefore, a pair of twin primes of the form $\{\mathrm{p}, \mathrm{p}+2\}$ is also a pair of primes of the form $\{2 \mathrm{n}-1,2 \mathrm{n}+1\}$. At the same time, the t win prime conjecture states is equivalently converted to that there exist infinitely many evens $2 n$ such that $2 n \pm 1$ all be odd primes.

Essentially, either way of expression, both are expressing the same proposition that there are infinitely many twin primes.

References

[1] M. B. Nathanson, Elementary Methods in Number Theory, Beijing, Springer-Verlag, 2003.
Section II, Divisors and Primes in Multiplicative Number Theory, 8--Prime Numbers, 8.4, notes.3, 287

