On The Frequency of Twin Primes

By Sidharth Ghoshal
February 04, 2012
Contents
Abstract: 3
Lemma 1: 6
Lemma 2 : 7
Lemma 3: 8
Conclusion: 9
Further Details: 9
Works Cited: 11

Abstract

:

The following document is an attempted (but failed) proof of the Twin Prime Conjecture by determining bounds for the number of twin prime pairs between a number and its square and then proving that the lower bound is always greater than 1 for sufficiently large numbers.

We will use proof by deduction to prove \exists infinitely many twin primes. Define a twin prime pair H as a pair of integers $(k, k+2)$ s.t. $k, k+2 \in P\{$ set of all primes $\} \& \emptyset$ as the value $k+4, \forall H$.

$$
\therefore k \not \equiv 0 \bmod 2
$$

```
k #三0 mod 3
    k\not\equiv0}0\operatorname{mod}
```

$$
\begin{gathered}
\vdots \\
k \not \equiv 0 \bmod t \in P<k \\
\& \\
\therefore k+2 \not \equiv 0 \bmod 2
\end{gathered}
$$

$$
\begin{aligned}
& k+2 \not \equiv 0 \bmod 3 \\
& k+2 \not \equiv 0 \bmod 5
\end{aligned}
$$

$$
k+2 \not \equiv 0 \bmod t \in P<k+2
$$

\therefore by definition of \emptyset we can assert that:

$$
\begin{gathered}
\emptyset \not \equiv 2,4 \bmod 2 \\
\emptyset \not \equiv 2,4 \bmod 3 \\
\emptyset \not \equiv 2,4 \bmod 5 \\
\vdots \\
\emptyset \neq 2,4 \bmod t \in P<\emptyset
\end{gathered}
$$

Define I^{\prime} as a on the interval $=[a, b], P_{m+1} \in P, m>1 \&$ consider the interval:

$$
Q_{1}=\left[\begin{array}{ll}
P_{m+1}, & P_{m+1}{ }^{2}
\end{array}\right]
$$

It follows from the sieve of Eratosthenes that if $R \in Z$ s.t.

$$
R \in Q_{1} \&
$$

$$
\begin{gathered}
R \not \equiv 0 \bmod 2 \\
R \not \equiv 0 \bmod 3 \\
R \not \equiv 0 \bmod 5 \\
\vdots \\
R \not \equiv 0 \bmod P_{m}
\end{gathered}
$$

$\rightarrow R \in P$. Given this definition it follows that $\exists H \in Q_{1}$ iff $\exists(k, k+2)$ s.t. $\mathrm{k}, \mathrm{k}+2 \in P \rightarrow \exists H \in Q_{1}$ iff $\exists \emptyset$ $\in Q_{1}$ since we can be sure that the largest possible $k+2 \in Q_{1}$ is $P_{m+1}{ }^{2}-2$ which by definition of \emptyset and primality of $(k, k+2)$ must satisfy:

$$
\begin{gathered}
\emptyset \not \equiv 2,4 \bmod 2 \\
\emptyset \not \equiv 2,4 \bmod 3 \\
\emptyset \not \equiv 2,4 \bmod 5 \\
\vdots \\
\emptyset \not \equiv 2,4 \bmod P_{m}
\end{gathered}
$$

Note $\exists P_{m+1}{ }^{2}-P_{m}+1$ integers $\in Q_{1}$ and approximately:

$$
\begin{gathered}
\left(\frac{1}{2}\right) \\
\left(\frac{1}{3}\right) \\
\left(\frac{3}{5}\right) \\
\vdots \\
\left(\frac{P_{m}-2}{P_{m}}\right)
\end{gathered}
$$

Of all these integers, satisfy the corresponding incongruence that \emptyset must satisfy.
\rightarrow The expected number of $\emptyset \in Q_{1}=\left(P_{m+1}{ }^{2}-P_{m+1}+1\right)\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(\frac{3}{5}\right) \ldots\left(\frac{P_{m}-2}{P_{m}}\right)$
\rightarrow The expected number of $\emptyset \in Q_{1}=E_{\emptyset}\left(P_{m+1}\right)$

$$
=\left(P_{m+1}^{2}-P_{m+1}+1\right)\left(\frac{1}{2}\right) \prod_{i=2}^{m}\left[\frac{P_{i}-2}{P_{i}}\right]
$$

Lemma 1:

$$
\mid \text { Error } \mid \text { of } E_{\emptyset}\left(P_{m+1}\right) \leq \pi\left(P_{m+1}-1\right)
$$

We begin by noting that given an interval:
$[a, b]$ where $a, b \in \mathbb{Z}$ and $a, b>0$
That the total number of multiples of Q on the interval inclusive is contained in the interval:

$$
\left[\frac{b-a+1}{Q}-\frac{Q-1}{Q}, \quad \frac{b-a+1}{Q}+\frac{Q-1}{Q}\right]
$$

We can write this statement more concisely as:
$\operatorname{Error}_{\left(\frac{1}{q}\right)} \in\left[-\frac{Q-1}{Q}, \frac{Q-1}{Q}\right]$
The error generated for each term in the product $\left(\frac{1}{2}\right) \prod_{i=2}^{m}\left[\frac{P_{i}-2}{P_{i}}\right]$ is bounded correspondingly within the terms of $\pm\left(\frac{1}{2}\right)+\sum_{i=2}^{m} \pm\left[\frac{P_{i}-1}{P_{i}}\right]$ for example:

$$
\therefore \text { Error of } E_{\emptyset}\left(P_{m+1}\right) \in\left[-\left(\frac{1}{2}\right)-\left(\frac{1}{3}\right) \ldots-\left(\frac{P_{m}-1}{P_{m}}\right), \quad\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right) \ldots+\left(\frac{P_{m}-1}{P_{m}}\right)\right]
$$

$$
\begin{aligned}
& \operatorname{Error}_{\left(\frac{1}{2}\right)} \in\left[-\left(\frac{1}{2}\right), \quad\left(\frac{1}{2}\right)\right] \\
& \operatorname{Error}_{\left(\frac{1}{3}\right)} \in\left[-\left(\frac{2}{3}\right), \quad\left(\frac{2}{3}\right)\right] \\
& \text { : } \\
& \operatorname{Error}_{\left(\frac{1}{P_{m}}\right)} \in\left[-\left(\frac{P_{m}-1}{P_{m}}\right), \quad\left(\frac{P_{m}-1}{P_{m}}\right)\right]
\end{aligned}
$$

$$
\rightarrow \text { Error of } E_{\emptyset}\left(P_{m+1}\right) \in\left[-\left(\frac{1}{2}\right)-\sum_{i=2}^{m}\left[\frac{P_{i}-1}{P_{i}}\right], \quad\left(\frac{1}{2}\right)+\sum_{i=2}^{m}\left[\frac{P_{i}-1}{P_{i}}\right]\right]
$$

Note that: $\left(\frac{P_{m}-1}{P_{m}}\right)<1 \forall P_{m} \in P$
\therefore Error of $E_{\emptyset}\left(P_{m+1}\right) \in\left[-1-\sum_{i=2}^{m}[1], \quad 1+\sum_{i=2}^{m}[1]\right]=\left[\begin{array}{ll}-m, & m\end{array}\right]$

$$
\begin{aligned}
=\left[-\pi\left(P_{m+1}-1\right)\right. & \left., \pi\left(P_{m+1}-1\right)\right] \\
& \rightarrow \mid \text { Error } \mid \text { of } E_{\emptyset}\left(P_{m+1}\right) \leq \pi\left(P_{m+1}-1\right)
\end{aligned}
$$

$$
\text { \& by corollary } \mid \text { Error } \mid \text { of } E_{\emptyset}\left(P_{m+1}\right) \leq \pi\left(P_{m+1}\right)
$$

End Lemma:

\therefore The expected number of $\emptyset \in Q_{1} \in$

$$
\begin{aligned}
& R_{1}=\left[\left(P_{m+1}^{2}-P_{m+1}+1\right)\left(\frac{1}{2}\right) \prod_{i=2}^{\pi\left(P_{m+1}\right)-1}\left[\frac{P_{i}-2}{P_{i}}\right]-\pi\left(P_{m+1}\right)\right. \\
&\left.\left(P_{m+1}^{2}-P_{m+1}+1\right)\left(\frac{1}{2}\right) \prod_{i=2}^{\pi\left(P_{m+1}\right)-1}\left[\frac{P_{i}-2}{P_{i}}\right]+\pi\left(P_{m+1}\right)\right]
\end{aligned}
$$

Lemma 2:

$$
\left(\frac{1}{3}\right)\left(\frac{3}{5}\right)\left(\frac{5}{7}\right) \ldots\left(\frac{P_{n}-2}{P_{n}}\right)=\prod_{i=2}^{n}\left[\frac{P_{i}-2}{P_{i}}\right] \geq\left(\frac{1}{3}\right) \prod_{i=3}^{n}\left[\frac{P_{i-1}}{P_{i}}\right]=\left(\frac{1}{3}\right)\left(\frac{3}{5}\right)\left(\frac{5}{7}\right) \ldots\left(\frac{P_{n-1}}{P_{n}}\right)=\left(\frac{1}{P_{n}}\right)
$$

$P_{n}>2 \in\{$ odd numbers $\} \rightarrow P_{n}-P_{n-1} \geq 2 \& P_{n}-P_{n-1} \in\{$ even numbers $\} \forall n>1$

$$
\begin{aligned}
& \text { if } P_{n}=11 \rightarrow P_{n-1}=7 \rightarrow \frac{P_{n-1}}{P_{n}}=\left(\frac{7}{11}\right) \leq \frac{9}{11}=\frac{P_{n}-2}{P_{n}} \rightarrow \frac{P_{n-1}}{P_{n}} \leq \frac{P_{n}-2}{P_{n}} . \\
& \therefore \text { if } P_{n}-P_{n-1}=2 \forall P_{n} \neq 11, \prod_{i=2}^{n}\left[\frac{P_{i}-2}{P_{i}}\right] \geq \prod_{i=3}^{n}\left[\frac{P_{i-1}}{P_{i}}\right]=\left(\frac{1}{P_{n}}\right) \\
& \text { if } P_{n}-P_{n-1} \neq 2 \forall P_{n}, \prod_{i=2}^{n}\left[\frac{P_{i}-2}{P_{i}}\right] \geq \prod_{i=3}^{n}\left[\frac{P_{i-1}}{P_{i}}\right]=\left(\frac{1}{P_{n}}\right) \\
& \therefore \prod_{i=2}^{n}\left[\frac{P_{i}-2}{P_{i}}\right] \geq \prod_{i=3}^{n}\left[\frac{P_{i-1}}{P_{i}}\right]=\left(\frac{1}{P_{n}}\right)
\end{aligned}
$$

End Lemma:

$$
\begin{aligned}
\therefore R_{1}^{r}=\left(P_{m+1}^{2}\right. & \left.-P_{m+1}+1\right)\left(\frac{1}{2}\right) \prod_{i=2}^{\pi\left(P_{m+1}\right)-1}\left[\frac{P_{i}-2}{P_{i}}\right]-\pi\left(P_{m+1}\right) \geq R_{2} \\
& =\left(P_{m+1}{ }^{2}-P_{m+1}+1\right)\left(\frac{1}{2}\right)\left(\frac{1}{3}\right) \prod_{i=3}^{\pi\left(P_{m+1}\right)-1}\left[\frac{P_{i-1}}{P_{i}}\right]-\pi\left(P_{m+1}\right) \\
& =\left(P_{m+1}{ }^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m}}\right)-\pi\left(P_{m+1}\right)
\end{aligned}
$$

Now we make an additional note that $P_{m+1}>P_{m} \because P$ is an ordered infinitely large set due to the work of Euclid ${ }^{1}$.

$$
\therefore R_{2}=\left(P_{m+1}^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m}}\right) \geq R_{3}=\left(P_{m+1}^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m+1}}\right)-\pi\left(P_{m+1}\right)
$$

Note that

$$
\pi(x)<1.25506 \frac{x}{\log (x)} \forall x \in \mathbb{R}, x \geq 17 \text { (Rosser,Schoenfield 2) }
$$

$\therefore R_{3}=\left(P_{m+1}^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m+1}}\right)-\pi\left(P_{m+1}\right) \geq R_{4}$

$$
=\left(P_{m+1}^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m+1}}\right)-1.25506 \frac{P_{m+1}}{\log \left(P_{m+1}\right)} \forall P_{m+1} \geq 17
$$

Lemma 3:

$\forall P_{m+1} \geq 17 R_{4}=\left(P_{m+1}{ }^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m+1}}\right)-1.25506 \frac{P_{m+1}}{\log \left(P_{m+1}\right)} \geq 1, \forall P_{m+1}$

$$
\geq 33912637
$$

$$
\begin{aligned}
& \left(P_{m+1}^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m+1}}\right)-1.25506 \frac{P_{m+1}}{\log \left(P_{m+1}\right)} \geq 1 \forall P_{m+1}=33912637 \\
& \frac{d}{d P_{m+1}}\left[\left(P_{m+1}{ }^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m+1}}\right)-1.25506 \frac{P_{m+1}}{\log \left(P_{m+1}\right)}\right] \geq 0 \forall P_{m+1} \geq 33912637 \\
& \quad \rightarrow\left(P_{m+1}{ }^{2}-P_{m+1}+1\right)\left(\frac{1}{6}\right)\left(\frac{1}{P_{m+1}}\right)-1.25506 \frac{P_{m+1}}{\log \left(P_{m+1}\right)} \geq 1 \forall P_{m+1}=33912637
\end{aligned}
$$

End Lemma:
Now note:

$$
R_{4} \geq 1 \forall P_{m+1} \geq 33912637
$$

$$
\begin{gathered}
R_{3} \geq R_{4} \geq 1 \forall P_{m+1} \geq 33912637 \\
R_{2} \geq R_{3} \geq R_{4} \geq 1 \forall P_{m+1} \geq 33912637 \\
R_{1}^{\prime} \geq R_{2} \geq R_{3} \geq R_{4} \geq 1 \forall P_{m+1} \geq 33912637 \rightarrow R_{1}^{\prime} \geq 1 \forall P_{m+1} \geq 33912637
\end{gathered}
$$

\rightarrow The expected number of $\emptyset \in Q_{1} \geq 1 \forall P_{m+1} \geq 33912637$

Conclusion:

$$
\begin{gathered}
\because \exists \text { infinite } Q \in P \text { of arbitrarily large size } \rightarrow \exists \text { infinite } P_{m+1} \geq 33912637 \\
\therefore \exists \text { infinitely many } \emptyset \\
\therefore \exists \text { infinitely many } H \\
\therefore \exists \text { infinitely many twin prime pairs } \\
\text { Q.E.D. }
\end{gathered}
$$

Further Details:

The method of error determination used in this proof was very loose and overall much greater than what is actually observed. Recall the following:

The error generated for each term in the product $\left(\frac{1}{2}\right) \prod_{i=2}^{m}\left[\frac{P_{i}-2}{P_{i}}\right]$ is bounded correspondingly within the terms of $\pm\left(\frac{1}{2}\right) \sum_{i=2}^{m}\left[\frac{P_{i}-1}{P_{i}}\right]$ for example:

$$
\begin{aligned}
& \text { Error }_{\left(\frac{1}{2}\right)} \in\left[-\left(\frac{1}{2}\right),\left(\frac{1}{2}\right)\right] \\
& \text { Error }_{\left(\frac{1}{3}\right)} \in\left[-\left(\frac{2}{3}\right),\left(\frac{2}{3}\right)\right]
\end{aligned}
$$

$$
\operatorname{Error}_{\left(\frac{1}{P_{m}}\right)} \in\left[-\left(\frac{P_{m}-1}{P_{m}}\right),\left(\frac{P_{m}-1}{P_{m}}\right)\right]
$$

Note that each successive term of Error is multiplied by the preceding term before its error is added and therefore:

$$
\begin{aligned}
\mid \text { Net Error } \mid \leq & \left(\frac{1 * 2 * 4 \ldots p_{m}-1}{2 * 3 * 5 \ldots p_{m}}\right)+\left(\frac{2 * 4 \ldots p_{m}-1}{3 * 5 \ldots p_{m}}\right) \ldots+\left(\frac{p_{m}-1}{p_{m}}\right) \\
& =\left(\prod_{q=1}^{m} \frac{p_{q}-1}{p_{q}}\right)+\left(\prod_{q=2}^{m} \frac{p_{q}-1}{p_{q}}\right) \ldots+\left(\prod_{q=m}^{m} \frac{p_{q}-1}{p_{q}}\right)=\sum_{i=1}^{m}\left[\prod_{q=i}^{m} \frac{p_{q}-1}{p_{q}}\right]
\end{aligned}
$$

Note that:

$$
\left(\frac{p_{m}-1}{p_{m}}\right) \geq\left(\prod_{q=r}^{m} \frac{p_{q}-1}{p_{q}}\right) \forall r \in \mathbb{Z}, m \geq r>0
$$

If one excludes the final term then the same argument can be made for $\left(\frac{p_{m-1}-1}{p_{m-1}}\right)$ and by induction for any arbitrary $\left(\frac{p_{m-i}-1}{p_{m-i}}\right)$ granted enough terms from the end of the error sum are removed. This can be of value to bounding the prime counting function more tightly in exchange for more computation.

Works Cited:

1. "Euclid's Proof of the Infinitude of Primes (c. 300 BC)." Euclid's Proof of the Infinitude of Primes (c. 300 BC). University of Tennessee at Martin, n.d. Web. 06 Feb. 2013. http://primes.utm.edu/notes/proofs/infinite/euclids.html.
2. Rosser, J. Barkley; Schoenfeld, Lowell (1962). "Approximate formulas for some functions of prime numbers.". Illinois J. Math. 6: 64-94... http://projecteuclid.org/DPubS?service=UI\&version=1.0\&verb=Display\&handle=euclid.ijm/1 255631807.
