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                                                          INTRODUCTION 

The expected mode of solving the Goldbach conjecture appears to be the utilization of advanced 

calculus or analysis, e.g., by the summation, or, integration, of the reciprocals involving directly 

or indirectly the primes to see whether they converge or diverge, in order to get a “feel” of the 

pattern of the distribution of the primes. But, such a method of solving the problem has evidently 

not succeeded so far. Some other approach or approaches could be more appropriate. This paper 

addresses the problem from several different angles, with reasoning backed by quantities that can 

be checked. 

 

Theorem:- Every even number after 2 is the sum of 2 primes, as per the Goldbach conjecture. 

 

Proof:- 

Every even number after 2 is the sum of 2 odd numbers. Every odd number is either a prime 

which is odd or a composite - product of primes which are odd; notably, every prime with the 

exception of 2 is an odd number. Every even number after 2 is also a composite, but, a composite 

with at least 1 even prime factor, namely, 2, while the rest of its prime factors are odd, i.e., it is 

an even composite.  

 

Therefore, every even number after 2 is the sum of 2 primes which are odd and/or the sum of 1 

prime which is odd and 1 odd composite whose prime factors are odd and/or the sum of 2 odd 

composites whose prime factors are odd, besides being an even composite with at least 1 even 

prime factor, namely, 2, while the rest of its prime factors are odd. 
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Lemma:  

By Euclid’s proof, the primes are infinite; this implies that there would be an infinitude of sums 

of 2 primes as per the Goldbach conjecture. The even numbers, which are sums of 2 primes as 

per the conjecture, are also infinite. Thus, there are an infinite number of even numbers which 

are sums of 2 primes, both the even numbers and sums of 2 primes being infinite.  

 

Corollary:  

The odd numbers, which are either prime, every prime with the exception of 2 being an odd 

number, or composite (have prime factors which are odd), are infinite; this implies that there 

would be an infinite number of sums of 2 odd numbers, each of which is equal to an even 

number. Hence, as there is an infinitude of even numbers which are sums of 2 primes, as per the 

above lemma, and as all primes with the exception of 2 are odd numbers, there are an infinite 

number of even numbers which are sums of 2 odd numbers that are prime, all the even numbers, 

sums of 2 odd numbers and primes being infinite; i.e., every even number after 2 is also the sum 

of 2 odd numbers that are prime. 

 

We thereby see the close interlink or relationship between the primes, even numbers and odd 

numbers, which are all infinite, which is significant. 

 

The following are thus evident: 

 

a) Every sum of 2 primes which are odd numbers is equal to an even number, as is  

    below in consecutive order: 

 

    2 + 2 = 1 + 3 = 4 

    3 + 3 = 1 + 5 = 6 

    3 + 5 = 1 + 7 = 8 

    5 + 5 = 3 + 7 = 10 

    5 + 7 = 1 + 11 = 12 

    7 + 7 = 3 + 11 = 1 + 13 = 14 

    3 + 13 = 5 + 11 = 16 

    7 + 11 = 5 + 13 = 1 + 17 = 18 

    7 + 13 = 3 + 17 = 1 + 19 = 20 

    11 + 11 = 3 + 19 = 5 + 17 = 11 + 11 = 22 

    11 + 13 = 5 + 19 = 7 + 17 = 1 + 23 = 24  

    13 + 13 = 3 + 23 = 7 + 19 = 26 

    11 + 17 = 5 + 23 = 28 

    13 + 17 = 11 + 19 = 7 + 23 = 1 + 29 = 30 

3 + 29 = 13 + 19 = 1 + 31 = 32      

17 + 17 = 3 + 31 = 5 + 29 = 11 + 23 = 17 + 17 = 34 

    17 + 19 = 5 + 31 = 7 + 29 = 13 + 23 = 36 

    19 + 19 = 7 + 31 = 1 + 37 = 38 

    3 + 37 = 11 + 29 = 17 + 23 = 40 

    19 + 23 = 5 + 37 = 11 + 31 = 13 + 29 = 1 + 41 = 42 

    3 + 41 = 7 + 37 = 13 + 31 = 1 + 43 = 44 

    23 + 23 = 3 + 43 = 5 + 41 = 17 + 29 = 46 
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    5 + 43 = 7 + 41 = 11 + 37 = 17 + 31 = 19 + 29 = 1 + 47 = 48 

3 + 47 = 7 + 43 = 13 + 37 = 19 + 31 = 50 

    23 + 29 = 5 + 47 = 11 + 41 = 52 

    7 + 47 = 11 + 43 = 13 + 41 = 17 + 37 = 23 + 31 = 1 + 53 = 54 

3 + 53 = 13 + 43 = 19 + 37 = 56 

    29 + 29 = 5 + 53 = 11 + 47 = 17 + 41 = 29 + 29 = 58 

    29 + 31 = 7 + 53 = 13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 1 + 59 = 60 

    31 + 31 = 3 + 59 = 19 + 43 = 1 + 61 = 62 

    3 + 61 = 5 + 59 = 11 + 53 = 17 + 47 = 23 + 41 = 64 

    5 + 61 = 7 + 59 = 13 + 53 = 19 + 47 = 23 + 43 = 29 + 37 = 66 

7 + 61 = 31 + 37 = 1 + 67 = 68 

    3 + 67 = 11 + 59 = 17 + 53 = 23 + 47 = 29 + 41 = 70 

    5 + 67 = 11 + 61 = 13 + 59 = 19 + 53 = 29 + 43 = 31 + 41 = 1 + 71 = 72 

    37 + 37 = 3 + 71 = 7 + 67 = 13 + 61 = 31 + 43 = 37 + 37 = 1 + 73 = 74  

3 + 73 = 5 + 71 = 17 + 59 = 23 + 53 = 29 + 47 = 76 

    37 + 41 = 5 + 73 = 7 + 71 = 11 + 67 = 31 + 47 = 37 + 41 = 78 

    7 + 73 = 13 + 67 = 19 + 61 = 37 + 43 = 1 + 79 = 80 

    41 + 41 = 3 + 79 = 11 + 71 = 23 + 59 = 29 + 53 = 82 

41 + 43 = 5 + 79 = 11 + 73 = 13 + 71 = 17 + 67 = 23 + 61 = 31 + 53 = 37 + 47  

= 1+ 83 = 84 

43 + 43 = 3 + 83 = 7 + 79 = 13 + 73 = 19 + 67 = 43 + 43 = 86 

5 + 83 = 17 + 71 = 29 + 59 = 41 + 47 = 88 

7 + 83 = 11 + 79 = 17 + 73 = 19 + 71 = 23 + 67 = 29 + 61 = 31 + 59 = 37   

+ 53 = 43 + 47 = 1 + 89 = 90 

3 + 89 = 13 + 79 = 19 + 73 = 31 + 61 = 1 + 91 = 92 

47 + 47 = 5 + 89 = 11 + 83 = 23 + 71 = 41 + 53 = 47 + 47 = 94 

5 + 91 = 7 + 89 = 13 + 83 = 17 + 79 = 23 + 73 = 29 + 67 = 37 + 59 = 43 + 53 =  

96 

    7 + 91 = 19 + 79 = 31 + 67 = 37 + 61 = 1 + 97 = 98  

47 + 53 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53 = 100 

5 + 97 = 11 + 91 = 13 + 89 = 19 + 83 = 23 + 79 = 29 + 73 = 31 + 71 = 41  

+ 61 = 43 + 59 = 1 + 101 = 102      

                                                             .                                                         

                                                             . 

                                                             . 

                                                             . 

                                                               

b) Every sum of 1 prime which is an odd number & 1 odd composite which is the  

product of primes which are odd, is equal to the sum of 2 primes which are odd  

numbers, which are all each equal to an even number, as is below in consecutive  

order: 

 

3 + 9 = 5 + 7 = 1 + 11 = 12 

5 + 9 = 3 + 11 = 7 + 7 = 1 + 13 = 14 

7 + 9 = 3 + 13 = 5 + 11 = 16 

3 + 15 = 7 + 11 = 5 + 13 = 1 + 17 = 18 
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11 + 9 = 3 + 17 = 7 + 13 = 1 + 19 = 20 

13 + 9 = 3 + 19 = 5 + 17 = 11 + 11 = 22 

3 + 21 = 11 + 13 = 5 + 19 = 7 + 17 = 1 + 23 = 24 

17 + 9 = 3 + 23 = 7 + 19 = 13 + 13 = 26 

19 + 9 = 5 + 23 = 11 + 17 = 28 

5 + 25 = 13 + 17 = 11 + 19 = 7 + 23 = 1 + 29 = 30 

23 + 9 = 3 + 29 = 13 + 19 = 1 + 31 = 32 

7 + 27 = 17 + 17 = 3 + 31 = 5 + 29 = 11 + 23 = 17 + 17 = 34 

3 + 33 = 17 + 19 = 5 + 31 = 7 + 29 = 13 + 23 = 36 

29 + 9 = 7 + 31 = 19 + 19 = 1 + 37 = 38 

31 + 9 = 3 + 37 = 11 + 29 = 17 + 23 = 40 

3 + 39 = 19 + 23 = 5 + 37 = 11 + 31 = 13 + 29 = 1 + 41 = 42 

5 + 39 = 3 + 41 = 7 + 37 = 13 + 31 = 1 + 43 = 44 

37 + 9 = 3 + 43 = 5 + 41 = 17 + 29 = 23 + 23 = 46 

3 + 45 = 5 + 43 = 7 + 41 = 11 + 37 = 17 + 31 = 19 + 29 = 1 + 47 = 48 

41 + 9 = 3 + 47 = 7 + 43 = 13 + 37 = 19 + 31 = 50 

43 + 9 = 5 + 47 = 11 + 41 =23 + 29 = 52 

5 + 49 = 7 + 47 = 11 + 43 = 13 + 41 = 17 + 37 = 23 + 31 = 1 + 53 = 54 

47 + 9 = 3 + 53 = 13 + 43 = 19 + 37 = 56 

3 + 55 = 29 + 29 = 5 + 53 = 11 + 47 = 17 + 41 = 29 + 29 = 58 

5 + 55 = 29 + 31 = 7 + 53 = 13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 1 + 59 = 60 

53 + 9 = 3 + 59 = 19 + 43 = 31 + 31 = 1 + 61 = 62 

7 + 57 = 3 + 61 = 5 + 59 = 11 + 53 = 17 + 47 = 23 + 41 = 64 

11 + 55 = 5 + 61 = 7 + 59 = 13 + 53 = 19 + 47 = 23 + 43 = 29 + 37 = 66 

59 + 9 = 7 + 61 = 31 + 37 = 1 + 67 = 68 

61 + 9 = 3 + 67 = 11 + 59 = 17 + 53 = 23 + 47 = 29 + 41 = 70 

3 + 69 = 5 + 67 = 11 + 61 = 13 + 59 = 19 + 53 = 29 + 43 = 31 + 41 = 1 + 71 = 72 

5 + 69 = 37 + 37 = 3 + 71 = 7 + 67 = 13 + 61 = 31 + 43 = 37 + 37 = 1 + 73 = 74 

67 + 9 = 3 + 73 = 5 + 71 = 17 + 59 = 23 + 53 = 29 + 47 = 76 

3 + 75 = 37 + 41 = 5 + 73 = 7 + 71 = 11 + 67 = 31 + 47 = 37 + 41 = 78 

71 + 9 = 7 + 73 = 13 + 67 = 19 + 61 = 37 + 43 = 1 + 79 = 80 

73 + 9 = 3 + 79 = 11 + 71 = 23 + 59 = 29 + 53 = 41 + 41 = 82 

3 + 81 = 41 + 43 = 5 + 79 = 11 + 73 = 13 + 71 = 17 + 67 = 23 + 61 = 31 + 53 = 37  

+ 47 = 1+ 83 = 84 

5 + 81 = 43 + 43 = 3 + 83 = 7 + 79 = 13 + 73 = 19 + 67 = 43 + 43 = 86 

79 + 9 = 5 + 83 = 17 + 71 = 29 + 59 = 41 + 47 = 88 

3 + 87 = 7 + 83 = 11 + 79 = 17 + 73 = 19 + 71 = 23 + 67 = 29 + 61 = 31 + 59 = 37   

+ 53 = 43 + 47 = 1 + 89 = 90 

83 + 9 = 3 + 89 = 13 + 79 = 19 + 73 = 31 + 61 = 1 + 91 = 92 

7 + 87 = 47 + 47 = 5 + 89 = 11 + 83 = 23 + 71 = 41 + 53 = 47 + 47 = 94 

3 + 93 = 5 + 91 = 7 + 89 = 13 + 83 = 17 + 79 = 23 + 73 = 29 + 67 = 37 + 59 = 43 +  

53 = 96 

89 + 9 = 7 + 91 = 19 + 79 = 31 + 67 = 37 + 61 = 1 + 97 = 98 

91 + 9 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53 = 100 

3 + 99 = 5 + 97 = 11 + 91 = 13 + 89 = 19 + 83 = 23 + 79 = 29 + 73 = 31 + 71 = 41  

    + 61 = 43 + 59 = 1 + 101 = 102 
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                                                             .                                                         

                                                             . 

                                                             . 

                                                             . 

 

c) Every sum of 2 odd composites which are products of primes which are odd, is   

    equal to the sum of 2 primes which are odd numbers, which are all each equal to  

    an even number, as is below in consecutive order:  

 

    9 + 9 = 5 + 13 = 7 + 11 = 1 + 17 = 18 

    9 + 15 = 5 + 19 = 7 + 17 = 11 + 13 = 1 + 23 = 24 

    15 + 15 = 7 + 23 = 11 + 19 = 13 + 17 = 1 + 29 = 30 

    9 + 25 = 7 + 27 = 17 + 17 = 3 + 31 = 5 + 29 = 11 + 23 = 17 + 17 = 34 

15 + 21 = 5 + 31 = 7 + 29 = 13 + 23 = 17 + 19 = 36 

15 + 25 = 3 + 37 = 11 + 29 = 17 + 23 = 40 

21 + 21 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23 = 1 + 41 = 42 

9 + 35 = 3 + 41 = 7 + 37 = 13 + 31 = 1 + 43 = 44 

21 + 25 = 3 + 43 = 5 + 41 = 17 + 29 = 23 + 23 = 46 

9 + 39 = 5 + 43 = 7 + 41 = 11 + 37 = 17 + 31 = 19 + 29 = 1 + 47 = 48 

    25 + 25 = 3 + 47 = 7 + 43 = 13 + 37 = 19 + 31 = 50 

    25 + 27 = 5 + 47 = 11 + 41 =23 + 29 = 52 

27 + 27 = 7 + 47 = 11 + 43 = 13 + 41 = 17 + 37 = 23 + 31 = 1 + 53 = 54 

21 + 35 = 3 + 53 = 13 + 43 = 19 + 37 = 56 

9 + 49 = 29 + 29 = 5 + 53 = 11 + 47 = 17 + 41 = 29 + 29 = 58 

27 + 33 = 7 + 53 = 13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 29 + 31 = 1 + 59 = 60 

27 + 35 = 31 + 31 = 3 + 59 = 19 + 43 = 1 + 61 = 62 

9 + 55 = 3 + 61 = 5 + 59 = 11 + 53 = 17 + 47 = 23 + 41 = 64 

    33 + 33 = 5 + 61 = 7 + 59 = 13 + 53 = 19 + 47 = 23 + 43 = 29 + 37 = 66 

    33 + 35 = 7 + 61 = 31 + 37 = 1 + 67 = 68 

35 + 35 = 3 + 67 = 11 + 59 = 17 + 53 = 23 + 47 = 29 + 41 = 70 

9 + 63 = 5 + 67 = 11 + 61 = 13 + 59 = 19 + 53 = 29 + 43 = 31 + 41 = 1 + 71 = 72 

35 + 39 = 3 + 71 = 7 + 67 = 13 + 61 = 31 + 43 = 37 + 37 = 1 + 73 = 74 

21 + 55 = 3 + 73 = 5 + 71 = 17 + 59 = 23 + 53 = 29 + 47 = 76 

39 + 39 = 5 + 73 = 7 + 71 = 11 + 67 = 31 + 47 = 37 + 41 = 78 

15 + 65 = 7 + 73 = 13 + 67 = 19 + 61 = 37 + 43 = 1 + 79 = 80 

25 + 57 = 41 + 41 = 3 + 79 = 11 + 71 = 23 + 59 = 29 + 53 = 82 

39 + 45 = 5 + 79 = 11 + 73 = 13 + 71 = 17 + 67 = 23 + 61 = 31 + 53 = 37 + 47 =  

41 + 43 = 1 + 83 = 84 

9 + 77 = 43 + 43 = 3 + 83 = 7 + 79 = 13 + 73 = 19 + 67 = 43 + 43 = 86 

25 + 63 = 5 + 83 = 17 + 71 = 29 + 59 = 41 + 47 = 88 

45 + 45 = 7 + 83 = 11 + 79 = 17 + 73 = 19 + 71 = 23 + 67 = 29 + 61 = 31 + 59 =  

37 + 53 = 43 + 47 = 1 + 89 = 90 

15 + 77 = 3 + 89 = 13 + 79 = 19 + 73 = 31 + 61 = 1 + 91 = 92 

45 + 49 = 5 + 89 = 11 + 83 = 23 + 71 = 41 + 53 = 47 + 47 = 94 

9 + 87 = 5 + 91 = 7 + 89 = 13 + 83 = 17 + 79 = 23 + 73 = 29 + 67 = 37 + 59 = 43 +  

53 = 96 
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    49 + 49 = 7 + 91 = 19 + 79 = 31 + 67 = 37 + 61 = 1 + 97 = 98  

    49 + 51 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53 = 100 

51 + 51 = 5 + 97 = 11 + 91 = 13 + 89 = 19 + 83 = 23 + 79 = 29 + 73 = 31 + 71 =  

41 + 61 = 43 + 59 = 1 + 101 = 102                                  

                                                                 . 

                                                                 . 

                                                                 . 

                                                                 . 

 

d) From (a), (b) & (c) above, we have the even numbers from 4 to 102 … composed   

    as follows: 

 

    1)   4 = 2 + 2 = 1 + 3 (sum of 2 primes only) 

    2)   6 = 3 + 3 = 1 + 5 (sum of 2 primes only) 

    3)   8 = 3 + 5 = 1 + 7 (sum of 2 primes only) 

    4)   10 = 5 + 5 = 3 + 7 (sum of 2 primes only) 

    5)   12 = 5 + 7 = 1 + 11 = 3 + 9 (sum of 1 prime & 1 odd composite) 

    6)   14 = 3 + 11 = 7 + 7 = 1 + 13 = 5 + 9 (sum of 1 prime & 1 odd composite) 

    7)   16 = 3 + 13 = 5 + 11 = 7 + 9 (sum of 1 prime & 1 odd composite) 

    8)   18 = 5 + 13 = 7 + 11 = 1 + 17 = 3 + 15 (sum of 1 prime & 1 odd composite) =   

           9 + 9 (sum of 2 odd composites) 

    9)   20 = 3 + 17 = 7 + 13 = 1 + 19 = 11 + 9 (sum of 1 prime & 1 odd composite) 

    10) 22 = 3 + 19 = 5 + 17 = 11 + 11 = 13 + 9 (sum of 1 prime & 1 odd composite) 

    11) 24 = 5 + 19 = 7 + 17 = 11 + 13 = 1 + 23 = 3 + 21 (sum of 1 prime & 1 odd  

          composite) = 9 + 15 (sum of 2 odd composites) 

    12) 26 = 3 + 23 = 7 + 19 = 13 + 13 = 17 + 9 (sum of 1 prime & 1 odd composite) 

    13) 28 = 5 + 23 = 11 + 17 = 19 + 9 (sum of 1 prime & 1 odd composite) 

    14) 30 = 7 + 23 = 11 + 19 = 13 + 17 = 1 + 29 = 5 + 25 (sum of 1 prime & 1 odd  

          composite) = 15 + 15 (sum of 2 odd composites) 

    15) 32 = 3 + 29 = 13 + 19 = 1 + 31 = 23 + 9 (sum of 1 prime & 1 odd composite) 

    16) 34 = 17 + 17 = 3 + 31 = 5 + 29 = 11 + 23 = 17 + 17 = 7 + 27 (sum of 1 prime    

          & 1 odd composite) = 9 + 25 (sum of 2 odd composites) 

    17) 36 = 5 + 31 = 7 + 29 = 13 + 23 = 17 + 19 = 3 + 33 (sum of 1 prime & 1 odd  

          composite) = 15 + 21 (sum of 2 odd composites) 

    18) 38 = 7 + 31 = 19 + 19 = 1 + 37 = 29 + 9 (sum of 1 prime & 1 odd composite) 

    19) 40 = 3 + 37 = 11 + 29 = 17 + 23 = 31 + 9 (sum of 1 prime & 1 odd composite)     

          = 15 + 25 (sum of 2 odd composites) 

    20) 42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23 = 1 + 41 = 3 + 39 (sum of 1 prime   

          & 1 odd composite) = 21 + 21 (sum of 2 odd composites) 

    21) 44 = 3 + 41 = 7 + 37 = 13 + 31 = 1 + 43 = 5 + 39 (sum of 1 prime & 1 odd  

          composite) = 9 + 35 (sum of 2 odd composites) 

    22) 46 = 3 + 43 = 5 + 41 = 17 + 29 = 23 + 23 = 37 + 9 (sum of 1 prime & 1 odd  

          composite) = 21 + 25 (sum of 2 odd composites) 

    23) 48 = 5 + 43 = 7 + 41 = 11 + 37 = 17 + 31 = 19 + 29 = 1 + 47 = 3 + 45 (sum of  

          1 prime & 1 odd composite) = 9 + 39 (sum of 2 odd composites) 

    24) 50 = 3 + 47 = 7 + 43 = 13 + 37 = 19 + 31 = 41 + 9 (sum of 1 prime & 1 odd  
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          composite) = 25 + 25 (sum of 2 odd composites)  

    25) 52 = 5 + 47 = 11 + 41 =23 + 29 = = 43 + 9 (sum of 1 prime & 1 odd   

          composite) = 25 + 27 (sum of 2 odd composites)  

    26) 54 = 7 + 47 = 11 + 43 = 13 + 41 = 17 + 37 = 23 + 31 = 1 + 53 = 5 + 49 (sum of  

          1 prime & 1 odd composite) = 27 + 27 (sum of 2 odd composites) 

    27) 56 = 3 + 53 = 13 + 43 = 19 + 37 = 47 + 9 (sum of 1 prime & 1 odd composite)  

          = 21 + 35 (sum of 2 odd composites) 

    28) 58 = 29 + 29 = 5 + 53 = 11 + 47 = 17 + 41 = 29 + 29 = 3 + 55 (sum of 1 prime  

          & 1 odd composite) = 9 + 49 (sum of 2 odd composites) 

    29) 60 = 7 + 53 = 13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 29 + 31 = 1 + 59 = 5 +   

          55 (sum of 1 prime & 1 odd composite) = 27 + 33 (sum of 2 odd composites) 

    30) 62 = 3 + 59 = 19 + 43 = 31 + 31 = 1 + 61 = 53 + 9 (sum of 1 prime & 1 odd 

          composite) = 27 + 35 (sum of 2 odd composites) 

    31) 64 = 3 + 61 = 5 + 59 = 11 + 53 = 17 + 47 = 23 + 41 = 7 + 57 (sum of 1 prime    

          & 1 odd composite) = 9 + 55 (sum of 2 odd composites) 

    32) 66 = 5 + 61 = 7 + 59 = 13 + 53 = 19 + 47 = 23 + 43 = 29 + 37 = 11 + 55 (sum  

          of 1 prime & 1 odd composite) = 33 + 33 (sum of 2 odd composites) 

    33) 68 = 7 + 61 = 31 + 37 = 1 + 67 = 59 + 9 (sum of 1 prime & 1 odd composite) =  

          33 + 35 (sum of 2 odd composites)   

    34) 70 = 3 + 67 = 11 + 59 = 17 + 53 = 23 + 47 = 29 + 41 = 61 + 9 (sum of 1 prime   

          & 1 odd composite) = 35 + 35 (sum of 2 odd composites) 

    35) 72 = 5 + 67 = 11 + 61 = 13 + 59 = 19 + 53 = 29 + 43 = 31 + 41 = 1 + 71 = 3 +  

          69 (sum of 1 prime & 1 odd composite) = 9 + 63 (sum of 2 odd composites) 

    36) 74 = 3 + 71 = 7 + 67 = 13 + 61 = 31 + 43 = 37 + 37 = 1 + 73 = 5 + 69 (sum of  

          1 prime & 1 odd composite) = 35 + 39 (sum of 2 odd composites)  

    37) 76 = 3 + 73 = 5 + 71 = 17 + 59 = 23 + 53 = 29 + 47 = 67 + 9 (sum of 1 prime 

          & 1 odd composite) = 21 + 55 (sum of 2 odd composites) 

    38) 78 = 5 + 73 = 7 + 71 = 11 + 67 = 31 + 47 = 37 + 41 = 3 + 75 (sum of 1 prime   

          & 1 odd composite) = 39 + 39 (sum of 2 odd composites) 

    39) 80 = 7 + 73 = 13 + 67 = 19 + 61 = 37 + 43 = 1 + 79 = 71 + 9 (sum of 1 prime  

          & 1 odd composite) = 15 + 65 (sum of 2 odd composites) 

    40) 82 = 3 + 79 = 11 + 71 = 23 + 59 = 29 + 53 = 41 + 41 = 73 + 9 (sum of 1 prime  

          & 1 odd composite) = 25 + 57 (sum of 2 odd composites) 

    41) 84 = 5 + 79 = 11 + 73 = 13 + 71 = 17 + 67 = 23 + 61 = 31 + 53 = 37 + 47 = 41     

          + 43 = 1 + 83 = 3 + 81 (sum of 1 prime & 1 odd composite) = 39 + 45 (sum of     

          2 odd composites) 

    42) 86 = 43 + 43 = 3 + 83 = 7 + 79 = 13 + 73 = 19 + 67 = 43 + 43 = 5 + 81 (sum of  

          1 prime & 1 odd composite) = 9 + 77 (sum of 2 odd composites) 

    43) 88 = 5 + 83 = 17 + 71 = 29 + 59 = 41 + 47 = 79 + 9 (sum of 1 prime & 1 odd  

          composite) = 25 + 63 (sum of 2 odd composites) 

    44) 90 = 7 + 83 = 11 + 79 = 17 + 73 = 19 + 71 = 23 + 67 = 29 + 61 = 31 + 59 = 37   

          + 53 = 43 + 47 = 1 + 89 = 3 + 87 (sum of 1 prime & 1 odd composite) = 45 +     

          45 (sum of 2 odd composites) 

    45) 92 = 3 + 89 = 13 + 79 = 19 + 73 = 31 + 61 = 1 + 91 = 83 + 9 (sum of 1 prime  

          & 1 odd composite) = 15 + 77 (sum of 2 odd composites) 

    46) 94 = 5 + 89 = 11 + 83 = 23 + 71 = 41 + 53 = 47 + 47 = 7 + 87 (sum of 1 prime   
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          & 1 odd composite) = 45 + 49 (sum of 2 odd composites) 

    47) 96 = 5 + 91 = 7 + 89 = 13 + 83 = 17 + 79 = 23 + 73 = 29 + 67 = 37 + 59 = 43    

          + 53 = 3 + 93 (sum of 1 prime & 1 odd composite) = 9 + 87 (sum of 2 odd    

          composites) 

    48) 98 = 7 + 91 = 19 + 79 = 31 + 67 = 37 + 61 = 1 + 97 = 89 + 9 (sum of 1 prime  

          & 1 odd composite) = 49 + 49 (sum of 2 odd composites) 

    49) 100 = 3 + 97 = 11 + 89 = 17 + 83 = 29 + 71 = 41 + 59 = 47 + 53 = 91 + 9 (sum  

          of 1 prime & 1 odd composite) = 49 + 51 (sum of 2 odd composites) 

    50) 102 = 5 + 97 = 11 + 91 = 13 + 89 = 19 + 83 = 23 + 79 = 29 + 73 = 31 + 71 =  

           41 + 61 = 43 + 59 = 1 + 101 = 3 + 99 (sum of 1 prime & 1 odd composite) =   

           51 + 51 (sum of 2 odd composites)                              

                                                                       .                                                         

                                                                       . 

                                                                       . 

                                                                       .   

 

(The above is only a partial or incomplete listing of sums of 1 prime & 1 odd composite, and, 

sums of 2 odd composites, each of which is equal to the sum of 2 primes as well as an even 

number. For example, in the list of compositions for the even numbers 4 to 102 … above, in Item 

(48), we could also have other “combinations” such as: 98 = 7 + 91 = 19 + 79 = 31 + 67 = 37 + 

61 = 1 + 97 = 25 + 73 (sum of 1 prime & 1 odd composite) = 21 + 77 (sum of 2 odd composites), 

et al., in Item (49), we could also have other “combinations” such as: 100 = 3 + 97 = 11 + 89 = 

17 + 83 = 29 + 71 = 41 + 59 = 47 + 53 = 31 + 69 (sum of 1 prime & 1 odd composite) =  

45 + 55 (sum of 2 odd composites), et al., and, in Item (50), we could also have other 

“combinations” such as: 102 = 5 + 97 = 11 + 91 = 13 + 89 = 19 + 83 = 23 + 79 = 29 + 73 = 31 + 

71 = 41 + 61 = 43 + 59 = 1 + 101 = 17 + 85 (sum of 1 prime & 1 odd composite) = 21 + 81 (sum 

of 2 odd composites), et al.. That is, there are more “combinations” than those shown in the 

above listing.)  

 

In (d) above, in the list of compositions for the 50 consecutive even numbers 4 to 102 …, the 

even numbers 4, 6, 8 and 10 are only formed through the summing of 2 primes and not at all 

through the summing of 1 prime and 1 odd composite, or, the summing of 2 odd composites, 

which are impossibilities here. These sums of 2 primes are present (always present) throughout 

the whole list of compositions, from 4 right through to 102, while this is not the case for the 

sums of 1 prime and 1 odd composite, and, the sums of 2 odd composites. 

 

We reason here by the process of elimination, through analyzing the information in (d) above 

which pertains to the compositions of the 50 consecutive even numbers 4 to 102 … taken from 

the infinite list of even numbers. We stated at the beginning the following about the even 

numbers after 2:- 

 

Firstly, every even number after 2 is: 

A) The sum of 2 odd numbers. 

     (Every odd number is either a prime which is odd or a composite - product of  

     primes which are odd. 

     Notably, every prime with the exception of 2 is an odd number.) 
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Secondly, every even number after 2 is also (the below-mentioned is the logical consequence of 

(A) above): 

1) The sum of 2 primes which are odd. 

2) And/or the sum of 1 prime which is odd and 1 odd composite whose prime factors  

are odd.  

3) And/or the sum of 2 odd composites whose prime factors are odd. 

 

Evidently, at least 1 of (1), (2) & (3) above has to be the “atom” or building-block of the even 

numbers. In (d) above, we observe the following:- 

 

i)   All the 50 consecutive even numbers 4 to 102 … in (d) above taken from the  

      infinite list of even numbers are sums of 2 primes. 

ii)  It is impossible for each of the even numbers 4, 6, 8 & 10 in (d) above to be the  

      sum of 1 prime which is odd and 1 odd composite whose prime factors are odd. 

iii) It is impossible for each of the even numbers 4, 6, 8, 10, 12, 14, 16, 20, 22, 26,  

      28, 32 & 38 in (d) above to be the sum of 2 odd composites whose prime factors    

      are odd. 

 

It is evident from (i), (ii) & (iii) above that neither (2) nor (3) can be the “atom” or building-

block of the even numbers since they are “incomplete”. As (1) - the sum of 2 primes which are 

odd - is “complete”, i.e., always present in the 50 consecutive even numbers 4 to 102 … in (d) 

above, unlike (2) & (3), it evidently is the “atom” or building-block of the even numbers. That is, 

every even number after 2 is evidently the sum of 2 primes which are odd. In fact, a distributed 

computer search completed in 2008 at the University of Aveiro, Portugal, had verified this for all 

even numbers up to 12 x 10
17

, which is not a small list (it is in fact a long, impressive list, 

obtainable only with the help of modern computer technology). Definitely, due respectively to 

(ii) & (iii) above, we cannot say that every even number after 2 is the sum of 1 prime which is 

odd and 1 odd composite whose prime factors are odd, or, every even number after 2 is the sum 

of 2 odd composites whose prime factors are odd. 

 

By the above lemma and corollary, the infinitudes of the primes, even numbers and odd numbers 

indeed imply that there are an infinite number of sums of 2 primes which are odd numbers, 

which are each equal to an even number. As the sums of 2 primes which are odd numbers are 

evidently the “atoms” or building-blocks of the even numbers, it also implies that they are 

infinite, since the even numbers are infinite. 

 

Hypothetically, if on the other hand just 1 of the 3 items stated above, primes, even numbers and 

odd numbers, were finite, the above-said sums of 2 primes which are odd numbers, each of 

which is equal to an even number, would be finite. The primes, even numbers and odd numbers 

are evidently intricately linked, with the primes playing the part of building-blocks of both the 

even and odd numbers through various “combinations” as is described below. However, as the 

primes, even numbers and odd numbers are intricately linked, the finiteness (or, infinity) of any 1 

of them implies the finiteness (or, infinity) of the other 2, and vice versa. These 3 items are 

evidently “close comrades-in-arm” working together to give special meaning to the integers. As 
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these 3 are all infinite, it indeed implies that there is an infinitude of even numbers which are 

infinitely the sums of 2 primes that are odd and infinite. 

  

The prime numbers are evidently the atoms or building-blocks of the integers. The integers are 

either primes (not divisible by other integers except 1) or composites (divisible by other integers, 

e.g., the prime numbers), and, even (the sums of 2 primes as conjectured by Goldbach) or odd 

(primes, or, composites whereby they are divisible by prime factors). Therefore, to determine 

whether the conjecture that every even number (except the number 2) is the sum of 2 primes is 

true, it would be appropriate to analyze the evident atoms or building-blocks of the even numbers, 

viz., the prime numbers. For the solution to this conjecture we note that the primes (vide Euclid’s 

proof) and the even numbers are infinite, which implies that this conjecture should be true. 

 

We here analyze the “behavior” of the first 2,400 consecutive prime numbers (divided into 12 

batches of consecutive primes, each subsequent batch with an increment of 200 primes), leaving 

out 2 (because it is an even prime) and commencing with 3, which is the 2
nd. 

consecutive prime, 

the latter to be the first prime in our list of 2,400 consecutive primes (3 to 21,391), as follows:- 

 

(1)  200 Consecutive Primes From 3 To 1,229 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 2,458 

       (b)  No. of even numbers = 1,227 

       (c)  No. of primes = 200 

       (d)  Average no. of even numbers “generated” by each of these 200 consecutive  

              primes = 1,227 ÷ 200 = 6.14 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 200 primes = 200 x 200 = 40,000 

       (f)   Average no. of summings of 2 primes/permutations for each of the 1,227  

              even numbers = 40,000 ÷ 1,227 = 32.60 

 

(2)  400 Consecutive Primes From 3 To 2,749 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 5,498 

       (b)  No. of even numbers = 2,747 

       (c)  No. of primes = 400 

       (d)  Average no. of even numbers “generated” by each of these 400 consecutive  

              primes = 2,747 ÷ 400 = 6.87 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 400 primes = 400 x 400 = 160,000 

       (f)  Average no. of summings of 2 primes/permutations for each of the 2,747  

             even numbers = 160,000 ÷ 2,747 = 58.25 

 

(3)  600 Consecutive Primes From 3 To 4,421 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 8,842 
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       (b)  No. of even numbers = 4,419 

       (c)  No. of primes = 600 

       (d)  Average no. of even numbers “generated” by each of these 600 consecutive  

              primes = 4,419 ÷ 600 = 7.37 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 600 primes = 600 x 600 = 360,000 

       (f)  Average no. of summings of 2 primes/permutations for each of the 4,419      

             even numbers = 360,000 ÷ 4,419 = 81.47 

 

(4)  800 Consecutive Primes From 3 To 6,143 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 12,286 

       (b)  No. of even numbers = 6,141 

       (c)  No. of primes = 800 

       (d)  Average no. of even numbers “generated” by each of these 800 consecutive  

              primes = 6,141 ÷ 800 = 7.68 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 800 primes = 800 x 800 = 640,000 

       (f)  Average no. of summings of 2 primes/permutations for each of the 6,141  

             even numbers = 640,000 ÷ 6,141 = 104.22 

 

(5)  1,000 Consecutive Primes From 3 To 7,927 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 15,854 

       (b)  No. of even numbers = 7,925 

       (c)  No. of primes = 1,000 

       (d)  Average no. of even numbers “generated” by each of these 1,000  

              consecutive primes = 7,925 ÷ 1,000 = 7.93 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 1,000 primes = 1,000 x 1,000 = 1,000,000 

       (f)  Average no. of summings of 2 primes/permutations for each of the 7,925  

             even numbers = 1,000,000 ÷ 7,925 = 126.18 

 

(6)  1,200 Consecutive Primes From 3 To 9,739 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 19,478 

       (b)  No. of even numbers = 9,737 

       (c)  No. of primes = 1,200 

       (d)  Average no. of even numbers “generated” by each of these 1,200  

              consecutive primes = 9,737 ÷ 1,200 = 8.11 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 1,200 primes = 1,200 x 1,200 = 1,440,000 

       (f)  Average no. of summings of 2 primes/permutations for each of the 9,737  
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             even numbers = 1,440,000 ÷ 9,737 = 147.89 

 

(7)  1,400 Consecutive Primes From 3 To 11,677 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 23,354 

       (b)  No. of even numbers = 11,675 

       (c)  No. of primes = 1,400 

       (d)  Average no. of even numbers “generated” by each of these 1,400  

              consecutive primes = 11,675 ÷ 1,400 = 8.34 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 1,400 primes = 1,400 x 1,400 = 1,960,000 

       (f)  Average no. of summings of 2 primes/permutations for each of the 11,675  

             even numbers = 1,960,000 ÷ 11,675 = 167.88 

 

(8)  1,600 Consecutive Primes From 3 To 13,513 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 27,026 

       (b)  No. of even numbers = 13,511 

       (c)  No. of primes = 1,600 

       (d)  Average no. of even numbers “generated” by each of these 1,600  

              consecutive primes = 13,511 ÷ 1,600 = 8.44 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 1,600 primes = 1,600 x 1,600 = 2,560,000 

       (f)  Average no. of summings of 2 primes/permutations for each of the 13,511  

             even numbers = 2,560,000 ÷ 13,511 = 189.48 

 

(9)  1,800 Consecutive Primes From 3 To 15,413 

       (a)  Even numbers (obtained by summing of 2 primes) = 6 to 30,826 

       (b)  No. of even numbers = 15,411 

       (c)  No. of primes = 1,800 

       (d)  Average no. of even numbers “generated” by each of these 1,800  

              consecutive primes = 15,411 ÷ 1,800 = 8.56 

       (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 1,800 primes = 1,800 x 1,800 = 3,240,000 

       (f)  Average no. of summings of 2 primes/permutations for each of the 15,411  

             even numbers = 3,240,000 ÷ 15,411 = 210.24 

 

(10) 2,000 Consecutive Primes From 3 To 17,393 

        (a)  Even numbers (obtained by summing of 2 primes) = 6 to 34,786 

        (b)  No. of even numbers = 17,391 

        (c)  No. of primes = 2,000 

        (d)  Average no. of even numbers “generated” by each of these 2,000  
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               consecutive primes = 17,391 ÷ 2,000 = 8.70 

        (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

               et al.) for these 2,000 primes = 2,000 x 2,000 = 4,000,000 

        (f)   Average no. of summings of 2 primes/permutations for each of the 17,391  

               even numbers = 4,000,000 ÷ 17,391 = 230.00 

 

(11) 2,200 Consecutive Primes From 3 To 19,427 

        (a)  Even numbers (obtained by summing of 2 primes) = 6 to 38,854 

        (b)  No. of even numbers = 19,425 

        (c)  No. of primes = 2,200 

        (d)  Average no. of even numbers “generated” by each of these 2,200  

               consecutive primes = 19,425 ÷ 2,200 = 8.83 

        (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

              et al.) for these 2,200 primes = 2,200 x 2,200 = 4,840,000 

        (f)  Average no. of summings of 2 primes/permutations for each of the 19,425  

              even numbers = 4,840,000 ÷ 19,425 = 249.16 

 

(12) 2,400 Consecutive Primes From 3 To 21,391 

        (a)  Even numbers (obtained by summing of 2 primes) = 6 to 42,782 

        (b)  No. of even numbers = 21,389 

        (c)  No. of primes = 2,400 

        (d)  Average no. of even numbers “generated” by each of these 2,400  

               consecutive primes = 21,389 ÷ 2,400 = 8.91 

        (e)  No. of summings of 2 primes/permutations (3 + 3, 3 + 5, 3 + 7, 3 + 11, ……  

               et al.) for these 2,400 primes = 2,400 x 2,400 = 5,760,000 

        (f)   Average no. of summings of 2 primes/permutations for each of the 21,389  

               even numbers = 5,760,000 ÷ 21,389 = 269.30 

 

There would evidently be more and more profuse repetitions and overlaps of the even numbers 

“generated” by the primes the higher up the infinite list of prime numbers we go, which is 

significant. (For a better insight of this, refer to Appendix 1 and Appendix 2.) 

 

We compare all the (d)s and (f)s in (1) to (12) above, which is as follows:- 

 

(d)  Average no. of even numbers “generated” by each of the consecutive primes  

       in (1) to (12) above, as follows according to the listings (1) to (12): 

 

       (1)   6.14 

       (2)   6.87 

       (3)   7.37 
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       (4)   7.68 

       (5)   7.93 

       (6)   8.11 

       (7)   8.34 

       (8)   8.44 

       (9)   8.56 

       (10) 8.70 

       (11) 8.83 

       (12) 8.91  

 

(f)  Average no. of summings of 2 primes/permutations for each of the even  

      numbers in (1) to (12) above, as follows according to the listings (1) to (12): 

 

      (1)   32.60 

      (2)   58.25 

      (3)   81.47 

      (4)   104.22 

      (5)   126.18 

      (6)   147.89 

      (7)   167.88 

      (8)   189.48 

      (9)   210.24 

      (10) 230.00 

      (11) 249.16 

      (12) 269.30 

 

The following is evident from the above information:- 

 

(A):  (d)  Average no. of even numbers “generated” by each of the consecutive  

                primes in the above 12 listings increases continually all the way from the  

                list: (1)  200 Consecutive Primes From 3 To 1,229 to the list: (12)  2,400  

                Consecutive Primes From 3 To 21,391, from 6.14 even numbers per  

                prime number in List (1) to 8.91 even numbers per prime number in List  

                (12). 

  

(B):  (f)  Average no. of summings of 2 primes/permutations for each of the even  

               numbers in the above 12 listings increases continually all the way from  

               the list: (1)  200 Consecutive Primes From 3 To 1,229 to the list: (12)   

               2,400 Consecutive Primes From 3 To 21,391, from 32.60 number of  

               summings of 2 primes/permutations per even number in List (1) to 269.30  
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               number of summings of 2 primes/permutations per even number in List  

               (12). 

 

Lemma:  

According to the principle of complete induction in set theory, if a set of natural numbers 

contains 1 and, for each n, it contains n + 1 whenever it contains all numbers less than n + 1, then 

it must contain every natural number, e.g., complete induction proves that every natural number 

is a product of primes.  

 

By induction, we now deduce the following: 

 

The larger the list of consecutive primes becomes, the greater would be the average number of 

even numbers “generated” by each of the primes in the list of consecutive primes (inferred from 

(A) above). 

 

The larger the list of consecutive primes becomes, the greater would be the average number of 

summings of 2 primes/permutations for each of the even numbers in the infinite list of even 

numbers (inferred from (B) above). 

 

Furthermore, the Goldbach conjecture had been tested and found to be correct for every even 

number up to 12 x 10
17

, which is not a small list, by a distributed computer search carried out at 

the University of Aveiro, Portugal, in 2008. 

 

As the primes and the even numbers are infinite, by the above lemma and all the above 

deductions and information, it could be inferred that the increases stated in (A) and (B) above, 

with the even numbers each being the sum of 2 primes, continue to infinity, i.e., the Goldbach 

conjecture becomes stronger and stronger the higher up the infinite list of prime numbers/even 

numbers we go - all the way to infinity. 

 

Next, we resort to the proof by contradiction. The above deduction would be reversed if, e.g., the 

following takes place (which is the reversal of the above-mentioned information): 

 

(A):  (d)  Average no. of even numbers “generated” by each of the consecutive  

                primes in the above 12 listings decreases continually all the way from the  

                list: (1)  200 Consecutive Primes From 3 To 1,229 to the list: (12)  2,400  

                Consecutive Primes From 3 To 21,391, from 8.91 even numbers per  

                prime number in List (1) to 6.14 even numbers per prime number in List  

                (12). 

  

(B):  (f)  Average no. of summings of 2 primes/permutations for each of the even  
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               numbers in the above 12 listings decreases continually all the way from  

               the list: (1)  200 Consecutive Primes From 3 To 1,229 to the list: (12)   

               2,400 Consecutive Primes From 3 To 21,391, from 269.30 number of  

               summings of 2 primes/permutations per even number in List (1) to 32.60  

               number of summings of 2 primes/permutations per even number in List  

               (12). 

 

If this reversed state happens, the implication is that there would reach a point when there are no 

more batches of 2 prime numbers summing together to form even numbers, in which case the 

Goldbach conjecture would be false. Evidently this would happen when the prime numbers are 

finite. As the prime numbers are infinite (as Euclid had proved long ago) this would never 

happen. 

 

Since the above information indicate otherwise, and, the prime numbers are infinite, we accept 

the above induction/deduction and infer that the Goldbach conjecture could not be false, i.e., the 

Goldbach conjecture is true, and, every even number (except 2) is indeed the sum of 2 prime 

numbers. This concludes the proof by contradiction. 

 

We take a look at the following example to see how effectively the primes “generate” new even 

numbers in accordance with the Goldbach conjecture:-  

 

Density Of New Even Numbers “Generated” (See Appendix 1 For Example Of 

Computation Method) 
  

(a)  Set Of Integers, 51 To 100, With 10 Primes Within It  =  5 New Even Nos. Per Prime No. 

      (No. Of New Even Nos. “Generated”  =  50. No. Of Primes  =  10.) 
 

(b)  Set Of Integers, 101 To 150, With 10 Primes Within It  =  5.2 New Even Nos. Per Prime No. 

      (No. Of New Even Nos. “Generated”  =  52. No. Of Primes  =  10.) 

 

(c)   Set Of Integers, 151 To 200, With 11 Primes Within It  =  4.55 New Even Nos. Per Prime No.                                                                                                      

      (No. Of New Even Nos. “Generated”  =  50. No. Of Primes  =  11.) 
 

(d)  Set Of Integers, 201 To 250, With 7 Primes Within It  =  6 New Even Nos. Per Prime No.   

      (No. Of New Even Nos. “Generated”  =  42. No. Of Primes  =  7.) 
 

(e)  Set Of Integers, 251 To 300, With 9 Primes Within It  =  5.78 New Even Nos. Per Prime No.  

      (No. Of New Even Nos. “Generated”  =  52. No. Of Primes  =  9.) 

 

(f)  Set Of Integers, 301 To 350, With 8 Primes Within It  =  7 New Even Nos. Per Prime No. 

     (No. Of New Even Nos. “Generated”  =  56. No. Of Primes  =  8.) 
 

(g) Set Of Integers, 351 To 400, With 8 Primes Within It  =  6 New Even Nos. Per Prime No. 

     (No. Of New Even Nos. “Generated”  =  48. No. Of Primes  =  8.) 
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(h) Set Of Integers, 401 To 450, With 9 Primes Within It  =  5.78 New Even Nos. Per Prime No. 

     (No. Of New Even Nos. “Generated”  =  52. No. Of Primes  =  9.) 
 

(i)  Set Of Integers, 451 To 500, With 8 Primes Within It  =  6.25 New Even Nos. Per Prime No. 

     (No. Of New Even Nos. “Generated”  =  50. No. Of Primes  =  8.) 
  

(j)  Set Of Integers, 501 To 550, With 6 Primes Within It  =  8 New Even Nos. Per Prime No. 

     (No. Of New Even Nos. “Generated”  =  48. No. Of Primes  =  6.) 
      

(k)  Set Of Integers, 551 To 600, With 8 Primes Within It  =  6.5 New Even Nos. Per Prime No. 

      (No. Of New Even Nos. “Generated”  =  52. No. Of Primes  =  8.) 

 

(l)   Set Of Integers, 601 To 650, With 9 Primes Within It  =  5.33 New Even Nos. Per Prime No.                  

      (No. Of New Even Nos. “Generated”  =  48. No. Of Primes  =  9.) 
 

(m) Set Of Integers, 651 To 700, With 7 Primes Within It  =  6.29 New Even Nos. Per Prime No. 

      (No. Of New Even Nos. “Generated”  =  44. No. Of Primes  =  7.) 

 
(n)  Set Of Integers, 701 To 750, With 7 Primes Within It  =  7.43 New Even Nos. Per Prime No. 

      (No. Of New Even Nos. “Generated”  =  52. No. Of Primes  =  7.) 

 

(o)  Set Of Integers, 751 To 800, With 7 Primes Within It  =  7.71 New Even Nos. Per Prime No.  

      (No. Of New Even Nos. “Generated”  =  54. No. Of Primes  =  7.) 

 

(p)  Set Of Integers, 801 To 850, With 7 Primes Within It  =  6 New Even Nos. Per Prime No. 

      (No. Of New Even Nos. “Generated”  =  42. No. Of Primes  =  7.) 
 

(q)  Set Of Integers, 851 To 900, With 8 Primes Within It  =  6 New Even Nos. Per  Prime No. 

      (No. Of New Even Nos. “Generated”  =  48. No. Of Primes  =  8.) 
 

(r)   Set Of Integers, 901 To 950, With 7 Primes Within It  =  8.57 New Even Nos. Per Prime No.  

      (No. Of New Even Nos. “Generated”  =  60. No. Of Primes  =  7.) 
 

 (s) Set Of Integers, 951 To 1,000, With 7 Primes Within It  =  7.14 New Even Nos. Per Prime No.  

      (No. Of New Even Nos. “Generated”  =  50. No. Of Primes  =  7.) 
 

(t)  Set Of Integers, 1,001 To 1,050, With 8 Primes Within It  =  6.5 New Even Nos. Prime No. 

     (No. Of New Even Nos. “Generated”  =  52. No. Of Primes  =  8.) 
 

(u)  Set Of Integers, 1,051 To 1,100, With 8 Primes Within It  =  6 New Even Nos. Per Prime No. 

      (No. Of New Even Nos. “Generated”  =  48. No. Of Primes  =  8.) 

 
(v)  Set Of Integers, 1,101 To 1,150, With 5 Primes Within It  =  6.4 New Even Nos. Per Prime No. 

      (No. Of New Even Nos. “Generated”  =  32. No. Of Primes  =  5.) 

  

(w)  Set Of Integers, 1,151 To 1,200, With 7 Primes Within It  =  9.14 New Even Nos. Per Prime No. 

       (No. Of New Even Nos. “Generated”  =  64. No. Of Primes  =  7.) 
 

(x)   Set Of Integers, 1,201 To 1,250, With 8 Primes Within It  =  7 New Even Nos. Per Prime No.  

       (No. Of New Even Nos. “Generated”  =  56. No. Of Primes  =  8.) 

 
Average Density For The Above 24 Items ((a) To (x))  =  155.54 ÷ 24  =  6.48 New Even Nos. Per  
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                                                                                                                          Prime No.          
                                                                                                            

Maximum Density  =  9.14 New Even Nos. Per Prime No. (No. Of New Even Nos. 

“Generated”  =  64. No. Of Primes  =  7.) 

      

Minimum Density  =  4.55 New Even Nos. Per Prime No. (No. Of New Even Nos. 

“Generated”  =  50. No. Of Primes  =  11.) 

 

Such a “profuse generation” of “regular batches” of even numbers by the prime numbers 

is significant and lends further support to the validity of the Goldbach conjecture.   

 

There is further proof which is obtainable by analyzing a number of even numbers, e.g., 

we could split a group of 240 even consecutive numbers, from 4 to 482, into 8 equal 

batches (30 even numbers per batch) and analyze the batches; this would corroborate the 

fact that the infinite quantity of primes would “generate” a regular, continuous (without 

breaks or gaps) and infinite list of even numbers. The density of distribution or prime 

additions/combinations per even number evidently become greater and greater the higher 

up the infinite list of the even numbers we go, i.e., the Goldbach conjecture evidently 

becomes stronger and stronger the higher up the infinite list of the even numbers we go. 

This pattern is significant and is discernable in the following example:-  
 

(1)  1 st. Batch Of 30 Even Numbers (4 To 62)        (See Appendix 2 For Example Of  

                                                                                   Computation Method) 

      a)  Maximum No. Of Prime Additions/Combinations Per Even Number  =  5 

      b)  Minimum No. Of Prime Additions/Combinations Per Even Number  =  1 

      c)  Density Of Distribution  =  Average Prime Additions/Combinations Per Even  

           Number  =  2.77 Prime Additions/Combinations Per Even Number  

  

(2)  2 nd. Batch Of 30 Even Numbers (64 To 122)             

  

      a)  Maximum No. Of Prime Additions/Combinations Per Even Number  =  14 

      b)  Minimum No. Of Prime Additions/Combinations Per Even Number  =  2 

      c)  Density Of Distribution  =  Average Prime Additions/Combinations Per Even  

           Number  =  6.1 Prime Additions/Combinations Per Even Number 

      d)  Percentage Increase In Density Of Distribution  =  (6.1 - 2.77) ÷ 2.77 x 100%  =   

           120.22% 
 

(3)  3 rd. Batch Of 30 Even Numbers (124 To 182)                                              

  

      a)  Maximum No. Of Prime Additions/Combinations Per Even Number  =  16 

      b)  Minimum No. Of Prime Additions/Combinations Per Even Number  =  4 

      c)  Density Of Distribution  =  Average Prime Additions/Combinations Per Even  

           Number  =  9.07 Prime Additions/Combinations Per Even Number 

      d)  Percentage Increase In Density Of Distribution  =  (9.07 - 6.1) ÷ 6.1 x 100%  =  

           48.69% 
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(4)  4 th. Batch Of 30 Even Numbers (184 To 242) 

      

      a)  Maximum No. Of Prime Additions/Combinations Per Even Number  =  22 

      b)  Minimum No. Of Prime Additions/Combinations Per Even Number  =  5 

      c)  Density Of Distribution  =  Average Prime Additions/Combinations Per Even  

           Number  =  10.53 Prime Additions/Combinations Per Even Number 

      d)  Percentage Increase In Density Of Distribution  =  (10.53 - 9.07) ÷ 9.07 x 100%  =    

           16.1% 
 

(5)  5 th. Batch Of 30 Even Numbers (244 To 302) 

  

      a)  Maximum No. Of Prime Additions/Combinations Per Even Number  =  21 

      b)  Minimum No. Of Prime Additions/Combinations Per Even Number  =  7 

      c)  Density Of Distribution  =  Average Prime Additions/Combinations Per Even  

           Number  =  12.37 Prime Additions/Combinations Per Even Number 

      d)  Percentage Increase In Density Of Distribution  =  (12.37 - 10.53) ÷ 10.53 x 100%    

           =  17.47% 
 

(6)  6 th. Batch Of 30 Even Numbers (304 To 362) 

  

      a)  Maximum No. Of Prime Additions/Combinations Per Even Number  =  27 

      b)  Minimum No. Of Prime Additions/Combinations Per Even Number  =  7 

      c)  Density Of Distribution  =  Average Prime Additions/Combinations Per Even  

           Number  =  13.77 Prime Additions/Combinations Per Even Number 

      d)  Percentage Increase In Density Of Distribution  =  (13.77 - 12.37) ÷ 12.37 x 100%   

           =  11.32% 

 

(7)  7 th. Batch Of 30 Even Numbers (364 To 422) 

  

      a)  Maximum No. Of Prime Additions/Combinations Per Even Number  =  30 

      b)  Minimum No. Of Prime Additions/Combinations Per Even Number  =  7 

      c)  Density Of Distribution  =  Average Prime Additions/Combinations Per Even  

           Number  =  15.23 Prime Additions/Combinations Per Even Number 

      d)  Percentage Increase In Density Of Distribution  =  (15.23 - 13.77) ÷ 13.77 x 100%   

           =  10.6% 
 

(8)  8 th. Batch Of 30 Even Numbers (424 To 482) 

  

      a)  Maximum No. Of Prime Additions/Combinations Per Even Number  =  30 

      b)  Minimum No. Of Prime Additions/Combinations Per Even Number  =  9 

      c)  Density Of Distribution  =  Average Prime Additions/Combinations Per Even   

           Number  =  16.93 Prime Additions/Combinations Per Even Number 

      d)  Percentage Increase In Density Of Distribution  =  (16.93 - 15.23) ÷ 15.23 x 100%   

           =  11.16% 
  

The Density Of Distribution is expected to increase to infinity, though the Percentage 

Increase In Density Of Distribution is expected to thin out towards infinity - it could be 
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seen above to increase from 2.77 prime additions/combinations per even number for batch 

of even numbers, 4 to 62, all the way up to 16.93 prime additions/combinations per even 

number for batch of even numbers, 424 to 482. This is nevertheless significant evidence 

that lends support to the validity of the Goldbach conjecture. Also, the Maximum No. Of 

Prime Additions/Combinations Per Even Number and the Minimum No. Of Prime 

Additions/Combinations Per Even Number could be seen to range from 5 and 1 

respectively for batch of even numbers, 4 to 62, to 30 and 9 respectively for batch of even 

numbers, 424 to 482. This trend of “upward increase” of the (maximum and minimum) 

numbers of prime additions/combinations for each even number implies that at some 

points toward infinity the numbers of prime additions/combinations for each even number 

could be thousands, millions, billions, trillions, and more, if only we have the computing 

power to compute/check such prime additions/combinations (this again indicates that the 

Goldbach conjecture becomes evidently stronger and stronger the higher up the infinite 

list of the even numbers we go). This is significant too and is also evidence that lends 

support to the validity of the Goldbach conjecture. By the infinitude of the primes (vide 

Euclid’s proof) and even numbers, these “patterns”, as described here, would be there all 

the way to infinity, which would be in accordance with the Goldbach conjecture.  

 

The following evidence would further affirm the validity of the Goldbach conjecture:- 

 

1)   10 consecutive primes, commencing from the odd prime 3, would give rise to 10 x 10, or,  

       100 sums of 2 primes/partitions/permutations, but less than 100 different even numbers,  

       with many repetitions/overlaps (e.g., for these first 10 consecutive primes 3, 5, 7, 11, 13, 17,  

       19, 23, 29 & 31, 10 = 3 + 7 = 5 + 5 (2 partitions/permutations), 22 = 3 + 19 = 5 + 17 = 11 +  

       11 (3 partitions/permutations), &, 34 = 3 + 31 = 5 + 29 = 11 + 23 = 17 + 17 (4         

       partitions/permutations)). 

2)   20 consecutive primes, commencing from the odd prime 3, (increase of 100% in no. of  

       consecutive primes compared to (1) above) would give rise to 20 x 20, or, 400 sums of 2  

       primes/partitions/permutations (increase of 300% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 400 different even  

       numbers, with many repetitions/overlaps. 

3)   30 consecutive primes, commencing from the odd prime 3, (increase of 200% in no. of  

       consecutive primes compared to (1) above) would give rise to 30 x 30, or, 900 sums of 2  

       primes/partitions/permutations (increase of 800% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 900 different even  

       numbers, with many repetitions/overlaps.  

4)   40 consecutive primes, commencing from the odd prime 3, (increase of 300% in no. of  

       consecutive primes compared to (1) above) would give rise to 40 x 40, or, 1,600 sums of 2  

       primes/partitions/permutations (increase of 1,500% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 1,600 different even  

       numbers, with many repetitions/overlaps. 

5)   50 consecutive primes, commencing from the odd prime 3, (increase of 400% in no. of  

       consecutive primes compared to (1) above) would give rise to 50 x 50, or, 2,500 sums of 2  
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       primes/partitions/permutations (increase of  2,400% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 2,500 different even  

       numbers, with many repetitions/overlaps. 

6)   60 consecutive primes, commencing from the odd prime 3, (increase of 500% in no. of  

       consecutive primes compared to (1) above) would give rise to 60 x 60, or, 3,600 sums of 2  

       primes/partitions/permutations (increase of 3,500% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 3,600 different even  

       numbers, with many repetitions/overlaps. 

7)   70 consecutive primes, commencing from the odd prime 3, (increase of 600% in no. of  

       consecutive primes compared to (1) above) would give rise to 70 x 70, or, 4,900 sums of 2  

       primes/partitions/permutations (increase of 4,800% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 4,900 different even  

       numbers, with many repetitions/overlaps. 

8)   80 consecutive primes, commencing from the odd prime 3, (increase of 700% in no. of  

       consecutive primes compared to (1) above) would give rise to 80 x 80, or, 6,400 sums of 2  

       primes/partitions/permutations (increase of 6,300% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 6,400 different even  

       numbers, with many repetitions/overlaps. 

9)   90 consecutive primes, commencing from the odd prime 3, (increase of 800% in no. of  

       consecutive primes compared to (1) above) would give rise to 90 x 90, or, 8,100 sums of 2  

       primes/partitions/permutations (increase of 8,000% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 8,100 different even  

       numbers, with many repetitions/overlaps. 

10) 100 consecutive primes, commencing from the odd prime 3, (increase of 900% in no. of  

       consecutive primes compared to (1) above) would give rise to 100 x 100, or, 10,000 sums of  

       2 primes/partitions/permutations (increase of 9,900% in no. of sums of 2  

       primes/partitions/permutations compared to (1) above), but less than 10,000 different even  

       numbers, with many repetitions/overlaps. 

                                                                              . 

                                                                              . 

                                                                              . 

                                                                              . 

 

The following is evident from the above:- 

 

1)  The 1
st
. marginal increase of 100% in no. of consecutive primes (increase of 200% - 

      increase of 100%) results in marginal increase of 500% in no. of sums of 2  

      primes/partitions/permutations (increase of 800% - increase of 300%).  

2)  The 2
nd

. marginal increase of 100% in no. of consecutive primes (increase of 300% - 

      increase of 200%) results in marginal increase of 700% in no. of sums of 2  
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      primes/partitions/permutations (increase of 1,500% - increase of 800%).  

3)  The 3
rd

. marginal increase of 100% in no. of consecutive primes (increase of 400% - 

      increase of 300%) results in marginal increase of 900% in no. of sums of 2  

      primes/partitions/permutations (increase of 2,400% - increase of 1,500%).  

4)  The 4th. marginal increase of 100% in no. of consecutive primes (increase of 500% - 

      increase of 400%) results in marginal increase of 1,100% in no. of sums of 2  

      primes/partitions/permutations (increase of 3,500% - increase of 2,400%).  

5)  The 5
th

. marginal increase of 100% in no. of consecutive primes (increase of 600% - 

      increase of 500%) results in marginal increase of 1,300% in no. of sums of 2  

      primes/partitions/permutations (increase of 4,800% - increase of 3,500%).  

6)  The 6th. marginal increase of 100% in no. of consecutive primes (increase of 700% - 

      increase of 600%) results in marginal increase of 1,500% in no. of sums of 2  

      primes/partitions/permutations (increase of 6,300% - increase of 4,800%).  

7)  The 7
th

. marginal increase of 100% in no. of consecutive primes (increase of 800% - 

      increase of 700%) results in marginal increase of 1,700% in no. of sums of 2  

      primes/partitions/permutations (increase of 8,000% - increase of 6,300%).  

8)  The 8
th

. marginal increase of 100% in no. of consecutive primes (increase of 900% - 

      increase of 800%) results in marginal increase of 1,900% in no. of sums of 2  

      primes/partitions/permutations (increase of 9,900% - increase of 8,000%).  

                                                                        . 

                                                                        . 

                                                                        . 

                                                                        . 

 

(1) to (8) above show that while the marginal increase in no. of consecutive primes remains 

constant at 100% from (1) to (8), the marginal increase in no. of sums of 2 

primes/partitions/permutations goes up progressively from 500% in (1) to 1,900% in (8). It is 

evident here that the higher up the infinite list of primes we go, the more “overwhelming” or 

dense the (one-to-one) combinations of primes (i.e., sums of 2 primes, in the formation of even 

numbers) would become, the number of permutations of the combinations of primes tending 

towards infinity (with the infinity of the prime numbers). In other words, the Goldbach 

conjecture becomes stronger and stronger the higher up the infinite list of prime numbers/even 

numbers we go. The infinitude of the prime numbers (vide Euclid’s proof) and even numbers 

would hence imply the validity of the Goldbach conjecture.  

 

The prime number theorem, which had been proven, states that the limit of the quotient of the 2 

functions π(n) and n/log n as n approaches infinity is 1, which is expressed by the formula: 

 

lim  π(n)/(n/log n) = 1 

                                                          n→∞ 
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where π(n) is approximately equal to (n/log n) 

 

The function π(n) represents the number of primes less than or equal to the number n. This 

function measures the distribution of the prime numbers. With it, we compute the ratio n/π(n) 

which says what fraction of the numbers up to a given point are primes. (It is actually the 

reciprocal of this fraction.) The following is the result of a computation:- 

 

n                                                               π(n)                                                n/π(n) 

---------------------------------------------------------------------------------------------------- 

10                                                              4 (a)                                               2.5 

100                                                            25 (b)                                             4.0 

1,000                                                         168 (c)                                           6.0 

10,000                                                       1,229 (d)                                        8.1 

100,000                                                     9,592 (e)                                        10.4 

1,000,000                                                  78,498 (f)                                       12.7 

10,000,000                                                664,579 (g)                                    15.0 

100,000,000                                              5,761,455 (h)                                 17.4 

1,000,000,000                                           50,847,534 (i)                                19.7 

10,000,000,000                                         455,052,512 (j)                              22.0  

 

It is noticeable that as one moves from 1 power of 10 to the next, the ratio n/ π(n) increases by 

about 2.3, e.g., 22.0  -  19.7  =  2.3. As loge 10 = 2.30258 …, we may thus regard π(n) as 

approximately equal to n/log n. 

 

We have the following partitions with the primes described in the “π(n)” column above:- 

 

1) With (a) above, we have the following “prime + prime = even number”  

    combinations: 

     

    a) prime a + prime a: 4 x 4 “prime + prime” combinations 

    b) prime a + prime b: 4 x 25 “prime + prime” combinations 

c) prime a + prime c: 4 x 168 “prime + prime” combinations 

d) prime a + prime d: 4 x 1,229 “prime + prime” combinations 

e) prime a + prime e: 4 x 9,592 “prime + prime” combinations 

f) prime a + prime f: 4 x 78,498 “prime + prime” combinations 

g) prime a + prime g: 4 x 664,579 “prime + prime” combinations 

h) prime a + prime h: 4 x 5,761,455 “prime + prime” combinations 

i) prime a + prime i: 4 x 50,847,534 “prime + prime” combinations 

j) prime a + prime j: 4 x 455,052,512 “prime + prime” combinations 
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For example, for (j) above, a prime described in (a) in the “π(n)” column above plus a     

prime described in (j) in the “π(n)” column above give an even number, and there are  

4 x 455,052,512 such “prime + prime = even number” combinations. 

 

2) With (b) above, we have the following “prime + prime = even number”  

    combinations: 

 

a) prime b + prime a: 25 x 4 “prime + prime” combinations 

b) prime b + prime b: 25 x 25 “prime + prime” combinations 

c) prime b + prime c: 25 x 168 “prime + prime” combinations 

d) prime b + prime d: 25 x 1,229 “prime + prime” combinations 

e) prime b + prime e: 25 x 9,592 “prime + prime” combinations 

f) prime b + prime f: 25 x 78,498 “prime + prime” combinations 

g) prime b + prime g: 25 x 664,579 “prime + prime” combinations 

h) prime b + prime h: 25 x 5,761,455 “prime + prime” combinations 

i) prime b + prime i: 25 x 50,847,534 “prime + prime” combinations 

j) prime b + prime j: 25 x 455,052,512 “prime + prime” combinations 

 

3) With (c) above, we have the following “prime + prime = even number”  

    combinations: 

 

a) prime c + prime a: 168 x 4 “prime + prime” combinations 

b) prime c + prime b: 168 x 25 “prime + prime” combinations 

c) prime c + prime c: 168 x 168 “prime + prime” combinations 

d) prime c + prime d: 168 x 1,229 “prime + prime” combinations 

e) prime c + prime e: 168 x 9,592 “prime + prime” combinations 

f) prime c + prime f: 168 x 78,498 “prime + prime” combinations 

g) prime c + prime g: 168 x 664,579 “prime + prime” combinations 

h) prime c + prime h: 168 x 5,761,455 “prime + prime” combinations 

i) prime c + prime i: 168 x 50,847,534 “prime + prime” combinations 

j) prime c + prime j: 168 x 455,052,512 “prime + prime” combinations 

 

4) With (d) above, we have the following “prime + prime = even number”  

    combinations: 

 

    a) prime d + prime a: 1,229 x 4 “prime + prime” combinations 

    b) prime d + prime b: 1,229 x 25 “prime + prime” combinations 

c) prime d + prime c: 1,229 x 168 “prime + prime” combinations 

d) prime d + prime d: 1,229 x 1,229 “prime + prime” combinations 
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e) prime d + prime e: 1,229 x 9,592 “prime + prime” combinations 

f) prime d + prime f: 1,229 x 78,498 “prime + prime” combinations 

g) prime d + prime g: 1,229 x 664,579 “prime + prime” combinations 

h) prime d + prime h: 1,229 x 5,761,455 “prime + prime” combinations 

i) prime d + prime i: 1,229 x 50,847,534 “prime + prime” combinations 

j) prime d + prime j: 1,229 x 455,052,512 “prime + prime” combinations 

 

5) With (e) above, we have the following “prime + prime = even number”  

    combinations: 

 

    a) prime e + prime a: 9,592 x 4 “prime + prime” combinations 

    b) prime e + prime b: 9,592 x 25 “prime + prime” combinations 

c) prime e + prime c: 9,592 x 168 “prime + prime” combinations 

d) prime e + prime d: 9,592 x 1,229 “prime + prime” combinations 

e) prime e + prime e: 9,592 x 9,592 “prime + prime” combinations 

f) prime e + prime f: 9,592 x 78,498 “prime + prime” combinations 

g) prime e + prime g: 9,592 x 664,579 “prime + prime” combinations 

h) prime e + prime h: 9,592 x 5,761,455 “prime + prime” combinations 

i) prime e + prime i: 9,592 x 50,847,534 “prime + prime” combinations 

j) prime e + prime j: 9,592 x 455,052,512 “prime + prime” combinations 

 

6) With (f) above, we have the following “prime + prime = even number”  

    combinations: 

 

    a) prime f + prime a: 78,498 x 4 “prime + prime” combinations 

    b) prime f + prime b: 78,498 x 25 “prime + prime” combinations 

c) prime f + prime c: 78,498 x 168 “prime + prime” combinations 

d) prime f + prime d: 78,498 x 1,229 “prime + prime” combinations 

e) prime f + prime e: 78,498 x 9,592 “prime + prime” combinations 

f) prime f + prime f: 78,498 x 78,498 “prime + prime” combinations 

g) prime f + prime g: 78,498 x 664,579 “prime + prime” combinations 

h) prime f + prime h: 78,498 x 5,761,455 “prime + prime” combinations 

i) prime f + prime i: 78,498 x 50,847,534 “prime + prime” combinations 

j) prime f + prime j: 78,498 x 455,052,512 “prime + prime” combinations 

 

7) With (g) above, we have the following “prime + prime = even number”  

    combinations: 

 

    a) prime g + prime a: 664,579 x 4 “prime + prime” combinations 

    b) prime g + prime b: 664,579 x 25 “prime + prime” combinations 
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c) prime g + prime c: 664,579 x 168 “prime + prime” combinations 

d) prime g + prime d: 664,579 x 1,229 “prime + prime” combinations 

e) prime g + prime e: 664,579 x 9,592 “prime + prime” combinations 

f) prime g + prime f: 664,579 x 78,498 “prime + prime” combinations 

g) prime g + prime g: 664,579 x 664,579 “prime + prime” combinations 

h) prime g + prime h: 664,579 x 5,761,455 “prime + prime” combinations 

i) prime g + prime i: 664,579 x 50,847,534 “prime + prime” combinations 

j) prime g + prime j: 664,579 x 455,052,512 “prime + prime” combinations 

 

8) With (h) above, we have the following “prime + prime = even number”  

    combinations: 

 

    a) prime h + prime a: 5,761,455 x 4 “prime + prime” combinations 

    b) prime h + prime b: 5,761,455 x 25 “prime + prime” combinations 

c) prime h + prime c: 5,761,455 x 168 “prime + prime” combinations 

d) prime h + prime d: 5,761,455 x 1,229 “prime + prime” combinations 

e) prime h + prime e: 5,761,455 x 9,592 “prime + prime” combinations 

f) prime h + prime f: 5,761,455 x 78,498 “prime + prime” combinations 

g) prime h + prime g: 5,761,455 x 664,579 “prime + prime” combinations 

h) prime h + prime h: 5,761,455 x 5,761,455 “prime + prime” combinations 

i) prime h + prime i: 5,761,455 x 50,847,534 “prime + prime” combinations 

j) prime h + prime j: 5,761,455 x 455,052,512 “prime + prime” combinations 

 

9) With (i) above, we have the following “prime + prime = even number”  

    combinations: 

 

    a) prime i + prime a: 50,847,534 x 4 “prime + prime” combinations 

    b) prime i + prime b: 50,847,534 x 25 “prime + prime” combinations 

c) prime i + prime c: 50,847,534 x 168 “prime + prime” combinations 

d) prime i + prime d: 50,847,534 x 1,229 “prime + prime” combinations 

e) prime i + prime e: 50,847,534 x 9,592 “prime + prime” combinations 

f) prime i + prime f: 50,847,534 x 78,498 “prime + prime” combinations 

g) prime i + prime g: 50,847,534 x 664,579 “prime + prime” combinations 

h) prime i + prime h: 50,847,534 x 5,761,455 “prime + prime” combinations 

i) prime i + prime i: 50,847,534 x 50,847,534 “prime + prime” combinations 

j) prime i + prime j: 50,847,534 x 455,052,512 “prime + prime” combinations 

 

10) With (j) above, we have the following “prime + prime = even number”  

      combinations: 
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      a) prime j + prime a: 455,052,512 x 4 “prime + prime” combinations 

      b) prime j + prime b: 455,052,512 x 25 “prime + prime” combinations 

  c) prime j + prime c: 455,052,512 x 168 “prime + prime” combinations 

  d) prime j + prime d: 455,052,512 x 1,229 “prime + prime” combinations 

  e) prime j + prime e: 455,052,512 x 9,592 “prime + prime” combinations 

  f) prime j + prime f: 455,052,512 x 78,498 “prime + prime” combinations 

  g) prime j + prime g: 455,052,512 x 664,579 “prime + prime” combinations 

  h) prime j + prime h: 455,052,512 x 5,761,455 “prime + prime” combinations 

  i) prime j + prime i: 455,052,512 x 50,847,534 “prime + prime” combinations 

  j) prime j + prime j: 455,052,512 x 455,052,512 “prime + prime” combinations 

                                                             . 

                                                             . 

                                                             . 

                                                             . 

 

The above partitions/“prime + prime = even number” combinations are evidently progressively 

more “overwhelming”, dense (refer to Figure 1 below), and repetitive (overlapping). That is, the 

Goldbach conjecture becomes evidently progressively stronger and stronger towards infinity, 

which corroborates the earlier observation/induction. It is not surprising that computer searches 

completed in 2000 had verified that all even numbers up to 400 trillion (4 x 10
14

), which is not a 

small list, are sums of 2 primes, while in 2008, a distributed computer search ran by Tomas 

Oliveira e Silva, a researcher at the University of Aveiro, Portugal, had further verified the 

Goldbach conjecture up to 12 x 10
17

, which is a long, impressive list.  

 

Though the distribution of primes evidently becomes progressively less and less dense, e.g., 

ranging from 40% of primes within the first 10 integers to 4.55% of primes within the first 

10,000,000,000 integers, the density of partitions/“prime + prime = even number” combinations 

evidently becomes progressively greater and greater as is shown below:- 

 

1) For the 1st. 10-fold increase in no. of integers (100 integers ÷ 10 integers), the no. of  

partitions/“prime + prime = even number” combinations increases 39.06 times ([25 x 25  

partitions] ÷ [4 x 4 partitions]).  

2) For the 2
nd

. 10-fold increase in no. of integers (1,000 integers ÷ 100 integers), the no. of  

partitions/“prime + prime = even number” combinations increases 45.16 times ([168 x 168  

partitions] ÷ [25 x 25 partitions]). 

3) For the 3
rd

. 10-fold increase in no. of integers (10,000 integers ÷ 1,000 integers), the no. of  

partitions/“prime + prime = even number” combinations increases 53.52 times ([1,229 x 1,229   

partitions] ÷ [168 x 168 partitions]). 

4) For the 4
th

. 10-fold increase in no. of integers (100,000 integers ÷ 10,000 integers), the no. of  

partitions/“prime + prime = even number” combinations increases 60.91 times ([9,592 x 9,592  
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partitions] ÷ [1,229 x 1,229 partitions]). 

5) For the 5
th

. 10-fold increase in no. of integers (1,000,000 integers ÷ 100,000 integers), the no.  

of partitions/“prime + prime = even number” combinations increases 66.97 times ([78,498  

x 78,498 partitions] ÷ [9,592 x 9,592 partitions]). 

6) For the 6th. 10-fold increase in no. of integers (10,000,000 integers ÷ 1,000,000 integers), the  

     no. of partitions/“prime + prime = even number” combinations increases 71.68  times  

     ([664,579 x 664,579 partitions] ÷ [78,498 x 78,498 partitions]). 

7) For the 7
th

. 10-fold increase in no. of integers (100,000,000 integers ÷ 10,000,000 integers),  

     the no. of partitions/“prime + prime = even number” combinations increases 75.16 times  

     ([5,761,455 x 5,761,455 partitions] ÷ [664,579 x 664,579 partitions]). 

8) For the 8th. 10-fold increase in no. of integers (1,000,000,000 integers ÷ 100,000,000 integers),  

     the no. of partitions/“prime + prime = even number” combinations increases 77.89 times  

     ([50,847,534 x 50,847,534 partitions] ÷ [5,761,455 x 5,761,455 partitions]). 

9) For the 9
th

. 10-fold increase in no. of integers (10,000,000,000 integers ÷ 1,000,000,000  

     integers), the no. of partitions/“prime + prime = even number” combinations increases 80.09  

     times ([455,052,512 x 455,052,512 partitions] ÷ [50,847,534 x 50,847,534 partitions]). 

 

                                                                        Figure 1 

 

The infinitude of the primes, as per Euclid’s proof, together with the infinitude of the even 

numbers, however imply that the above partitions/“prime + prime = even number” combinations 

would become increasingly more “overwhelming”, dense, and repetitive (overlapping) towards 

infinity (the Goldbach conjecture becoming evidently stronger and stronger the higher up the 

infinite list of prime numbers/even numbers we go), hence “ensuring” the continuity (without 

any breaks or gaps) of the even numbers generated, and would be so all the way to infinity, thus 

proving that every even number after 2 is the sum of 2 primes. (For a better insight of how the 

above partitions/“prime + prime = even number” combinations would become increasingly more 

“overwhelming”, dense, and repetitive (overlapping) towards infinity, refer to Appendix 1 and 

Appendix 2.) 

 

The partitions/“prime + prime = even number” combinations, as had been conjectured by 

Goldbach, are evidently effusive, or in great abundance, in their occurrences, as is shown above 

and in the appendices below. This has important consequence. For instance, in Appendix 2, the 

number of partitions/“prime + prime = even number” combinations for each of the 30 even 

numbers (424 to 482) ranges from the minimum 9 (for the even numbers 428 and 458) to the 

maximum 30 (for the even numbers 462 and 480), giving an average of 16.93 partitions/“prime + 

prime = even number” combinations per even number. This is significant and is in stark contrast 

to the results of the Fundamental Theorem of Arithmetic or Unique Factorization Theorem, 

which states that there is only 1 possible combination of primes which will multiply together to 
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produce any particular number, e.g., the only combination of primes which will produce the 

number 2,079 is as follows:- 

 

3 x 3 x 3 x 7 x 11 (only) 

 

In the same manner, the following numbers are also uniquely factorized:- 

 

63 = 3 x 3 x 7 (only) 

153 = 3 x 3 x 17 (only) 

1,021,020 = 2 x 2 x 3 x 5 x 7 x 11 x 13 x 17 (only) 

 

In other words, every positive whole number can be broken up into prime factors, and, this can 

happen in only 1 way. In contrast, every even number is the sum of 2 primes in more than 1 way, 

e.g., 30 ways (i.e., 30 possible partitions) in the cases of the even numbers 462 and 480 as is 

described above. As is stated above, this is significant. This effusiveness or abundance of 

partitions/“prime + prime = even number” combinations somehow implies that the continuity 

(without any breaks or gaps) of the even numbers as sums of 2 primes (which are “generated” 

through the various additions of 2 primes) is “ensured”, i.e., the possible breaks in the continuity 

of the even numbers as sums of 2 primes (wherein some even numbers in-between can never be 

sums of 2 primes, as are shown in the example in Figure 2 below where there are 4 breaks in the 

continuity of the even numbers x1 to x12, where the 4 even numbers x4, x5, x8 & x10 can never be 

sums of 2 primes), which implies the falsity of the Goldbach conjecture, are somehow 

“prevented from happening” by this effusiveness or abundance:- 

 

x below represents, say, an extremely large even number. p below represents a prime. c below 

represents a composite number or non-prime whence the Goldbach conjecture would be false 

(i.e., not every even number is the sum of 2 primes as the composite numbers or non-primes 

would be the exceptions). 

                                                                 . 

                                                                 . 

                                                                 . 

                                                                 . 

                                                      x1  =  p1  +  p2 

                                                      x2  =  p3  +  p4 

                                                      x3  =  p5  +  p6 

                                                      x4  =  c1  +  c2 (break) 

                                                      x5  =  p7  +  c3 (break) 

                                                      x6  =  p8  +  p9 

                                                      x7  =  p10  +  p11 

                                                      x8  =  c4  +  p12 (break)  
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                                                      x9  =  p13  +  p14 

                                                      x10  =  c5  +  c6 (break) 

                                                      x11  =  p15  +  p16 

                                                      x12  =  p17  +  p18    

                                                                 . 

                                                                 . 

                                                                 .  

                                                                 . 

 

                                                           Figure 2 

 

There appears to be some deep meaning in the ease and effusiveness with which the 

partitions/“prime + prime = even number” combinations or sums of 2 primes show up, as is 

shown in this paper. If every even number which is the sum of 2 primes is the sum of 2 primes in 

only 1 way (a la the results of the Fundamental Theorem of Arithmetic or Unique Factorization 

Theorem described above), there could be possible breaks in the continuity of the even numbers 

as sums of 2 primes (as are shown in Figure 2 above), in other words, there could be some reason 

to doubt the validity of the Goldbach conjecture. But, on the contrary, the sums of 2 primes are 

evidently much effusive; they are evidently a defining characteristic of the even numbers. Under 

such a circumstance, it would be difficult to doubt the validity of the Goldbach conjecture. 

 

In elaborating further on the above point, we take a look at the following:- 
 

No. Of Old/Repeated (Also Appeared Earlier) Even Numbers/Overlaps “Generated” (By 

The Additions/Combinations Of Two Primes), For Integers 1 To 1,250 (See Appendix 1 

For Example Of Computation Method) 

 

(a)   Set Of Integers, 1 To 50, With 14 Primes Within It  =  Not Applicable 

(aa) Percentage Increase In Repetition  =  Not Applicable  

              

(b)   Set Of Integers, 51 To 100, With 10 Primes Within It  =  20 Repeated Even Nos. 

(bb) Percentage Increase In Repetition  =  Not Applicable  

 

(c)   Set Of Integers, 101 To 150, With 10 Primes Within It  =  46 Repeated Even Nos. 

(cc) Percentage Increase In Repetition  =  (46 - 20) ÷ 20 x 100%  =  130% 

 

(d)   Set Of Integers, 151 To 200, With 11 Primes Within It  =  73 Repeated Even Nos. 

(dd) Percentage Increase In Repetition  =  (73 - 46) ÷ 46 x 100%  =  58.7% 

 

(e)    Set Of Integers, 201 To 250, With 7 Primes Within It  =  93 Repeated Even Nos. 

(ee)  Percentage Increase In Repetition  =  (93 - 73) ÷ 73 x 100%  =  27.4% 

 

(f)    Set Of Integers, 251 To 300, With 9 Primes Within It  =  115 Repeated Even Nos. 
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(ff)   Percentage Increase In Repetition  =  (115 - 93) ÷ 93 x 100%  =  23.66% 

 

(g)    Set Of Integers, 301 To 350, With 8 Primes Within It  =  139 Repeated Even Nos. 

(gg)  Percentage Increase In Repetition  =  (139 - 115) ÷ 115 x 100%  =  20.87% 

 

(h)    Set Of Integers, 351 To 400, With 8 Primes Within It  =  172 Repeated Even Nos. 

(hh)  Percentage Increase In Repetition  =  (172 - 139) ÷ 139 x 100%  =  23.74%  

 

(i)     Set Of Integers, 401 To 450, With 9 Primes Within It  =  196 Repeated Even Nos. 

(ii)    Percentage Increase In Repetition  =  (196 - 172) ÷ 172 x 100%  =  13.95% 

              

(j)      Set Of Integers, 451 To 500, With 8 Primes Within It  =  220 Repeated Even Nos. 

(jj)     Percentage Increase In Repetition  =  (220 - 196) ÷ 196 x 100%  =  12.24% 

 

(k)     Set Of Integers, 501 To 550, With 6 Primes Within It  =  247 Repeated Even Nos. 

(kk)   Percentage Increase In Repetition  =  (247 - 220) ÷ 220 x 100%  =  12.27% 

 

(l)      Set Of Integers, 551 To 600, With 8 Primes Within It  =  268 Repeated Even Nos. 

(ll)     Percentage Increase In Repetition  =  (268 - 247) ÷ 247 x 100%  =  8.5% 

              

(m)    Set Of Integers, 601 To 650, With 9 Primes Within It  =  298 Repeated Even Nos. 

(mm) Percentage Increase In Repetition  =  (298 - 268) ÷ 268 x 100%  =  11.19% 

              

(n)     Set Of Integers, 651 To 700, With 7 Primes Within It  =  320 Repeated Even Nos. 

(nn)   Percentage Increase In Repetition  =  (320 - 298) ÷ 298 x 100%  =  7.38% 

                  

(o)     Set Of Integers, 701 To 750, With 7 Primes Within It  =  340 Repeated Even Nos. 

(oo)   Percentage Increase In Repetition  =  (340 - 320) ÷ 320 x 100%  =  6.25% 

 

(p)     Set Of Integers, 751 To 800, With 7 Primes Within It  =  367 Repeated Even Nos. 

(pp)   Percentage Increase In Repetition  =  (367 - 340) ÷ 340 x 100%  =  7.94% 

               

(q)     Set Of Integers, 801 To 850, With 7 Primes Within It  =  392 Repeated Even Nos. 

(qq)   Percentage Increase In Repetition  =  (392 - 367) ÷ 367 x 100%  =  6.81% 

 

(r)      Set Of Integers, 851 To 900, With 8 Primes Within It  =  412 Repeated Even Nos. 

(rr)     Percentage Increase In Repetition  =  (412 - 392) ÷ 392 x 100%  =  5.1% 

 

(s)      Set Of Integers, 901 To 950, With 7 Primes Within It  =  433 Repeated Even Nos. 

(ss)    Percentage Increase In Repetition  =  (433 - 412) ÷ 412 x 100%  =  5.1% 

 

(t)      Set Of Integers, 951 To 1,000, With 7 Primes Within It  =  470 Repeated Even Nos.  

(tt)     Percentage Increase In Repetition  =  (470 - 433) ÷ 433 x 100%  =  8.55% 

         

(u)     Set Of Integers, 1,001 To 1,050, With 8 Primes Within It  =  492 Repeated Even   

                                                                                                           Nos. 
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(uu)   Percentage Increase In Repetition  =  (492 - 470) ÷ 470 x 100%  =  4.68% 

 

(v)     Set Of Integers, 1,051 To 1,100, With 8 Primes Within It  =  523 Repeated Even  

                                                                                                           Nos. 

(vv)   Percentage Increase In Repetition  =  (523 - 492) ÷ 492 x 100%  =  6.3%  

 

(w)    Set Of Integers, 1,101 To 1,150, With 5 Primes Within It  =  545 Repeated Even   

                                                                                                           Nos.  

(ww) Percentage Increase In Repetition  =  (545 - 523) ÷ 523 x 100%  =  4.21% 

 

(x)     Set Of Integers, 1,151 To 1,200, With 7 Primes Within It  =  553 Repeated Even  

                                                                                                           Nos. 

(xx)   Percentage Increase In Repetition  =  (553 - 545) ÷ 545 x 100%  =  1.47% 

              

(y)     Set Of Integers, 1,201 To 1,250, With 8 Primes Within It  =  592 Repeated Even  

                                                                                                           Nos. 

(yy)   Percentage Increase In Repetition  =  (592 - 553) ÷ 553 x 100%  =  7.05% 
 

It could be seen above that on the whole the No. Of Old/Repeated (Also Appeared Earlier) 

Even Numbers/Overlaps “Generated” (By The Additions/Combinations Of Two Primes) 

increases progressively from 20 in (b) to 592 in (y), while it could be seen that the 

Percentage Increase In Repetition on the whole thins out from 130% in (cc) to 7.05% in 

(yy), with the lowest percentage increase of 1.47% found in (xx). This statistical trend or 

feature is not surprising and represents significant evidence that lends support to the 

validity of the Goldbach conjecture - the infinitude of both the primes and the even 

numbers implies that the above overlaps increase progressively to infinity. 
 

It is evident here that the higher up the primes we go the more “overwhelmingly” the even 

numbers “generated” would repeat themselves and overlap. This is significant. Though the 

infinitude of the prime numbers would ensure that there would always be new even numbers 

being “generated”, there is also the “fear” that there might be gaps, breaks or lack of continuity 

in the even numbers thus "generated" wherein some of the even numbers in-between can never 

be sums of 2 primes (as are shown in the example in Figure 2 above), thereby disproving the 

Goldbach conjecture. But, it is evident that these more and more profuse repetitions and overlaps 

of the even numbers thus “generated” by the primes the higher up the infinite list of prime 

numbers we go “ensure” that such gaps or breaks would not appear between the even numbers 

“generated” - they “ensure” that the even numbers thus “generated” by the primes in the infinite 

list of primes would be regular, continuous, without breaks or gaps, and, in consecutive running 

order. This evident greater and greater effusiveness or exuberance of the repetitions and overlaps 

of the even numbers thus “generated” by the primes the higher up the infinite list of prime 

numbers we go can be likened to a “play-safe measure” wherein there is “safety derived from 

large numbers”. In other words, since an even number could be formed in so many ways by 

adding 2 primes, i.e., so easily formed by adding 2 primes, evidently more so the higher up the 

infinite list of prime numbers we go, as has been shown above, the sums of 2 primes thus 
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becoming evidently a defining characteristic of the even numbers, we could expect every larger 

and larger even number to be the sum of 2 primes in more and more ways as has been shown 

above (and in the appendices below).   

 

We note again that a long, impressive list of consecutive even numbers, from 4 to 12 x 1017, had 

already been verified to be sums of 2 primes, and, these partitions/“prime + prime = even 

number” combinations would become increasingly more “overwhelming”, dense, and repetitive 

(overlapping) towards infinity (the Goldbach conjecture becoming evidently stronger and 

stronger the higher up the infinite list of prime numbers/even numbers we go), as is described 

above. The moot question now is, of course, whether after 12 x 10
17 

there would be an even 

number in the infinite list of even numbers which is the last, or, largest, even number that is the 

sum of 2 primes - this largest even number, if it exists (thereby proving the falsehood of the 

Goldbach conjecture), must (of necessity) be the sum of 2 primes that are each the largest 

existing prime. However, as the primes are infinite (vide Euclid’s proof), a largest existing prime 

is an impossibility. Therefore, there can never be a largest even number comprising of the 

summation of 2 largest existing primes which would disprove the Goldbach conjecture. As a 

matter of fact, the infinity of the primes implies that there would be an infinite number of double 

primes which sum up to an even number. 

 

The Goldbach conjecture is thus valid.  

 

                                                    CONCLUDING REMARKS 

A number of methods have been adopted in this paper in proving the Goldbach conjecture. 

 

The inductive method, which is a well-established proof, is one of the methods utilized. The 

following lends support to this inductive proof of the Goldbach conjecture: (a) The characteristic 

of a mountain or infinite volume of sand is reflected in the characteristic of some grains of sand 

found there so that studying the characteristic of some grains of sand found there is enough for 

deducing the characteristic of the mountain or infinite volume of sand, to ascertain the quality of 

a batch of products it is only necessary to inspect some carefully selected samples from that 

batch of products and not every one of the products and to carry out a population census, i.e., 

find out the characteristics of a population, it is only necessary to carry out a survey on some 

carefully selected respondents and not the whole population; in like manner, by the same 

principle, we just need to study a carefully selected list of even numbers, find out whether they 

are all sums of 2 primes and deduce by induction whether all even numbers after this list would 

also be sums of 2 primes - this act is rather like extrapolation. (For example, a distributed 

computer search completed in 2008 at the University of Aveiro, Portugal, had confirmed that 

every even number up to 12 x 10
17

, which is no small list of numbers, is the sum of 2 primes. By 

the principle of induction in this case we could deduce that all the even numbers after 12 x 10
17

 

would also be sums of 2 primes.) (b) Thus, in this way every even number after 2 could be 
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reasonably proved to be the sum of 2 primes. In fact, induction plays an important part in the 

proof. 

 

The other argument used to prove the conjecture is the indirect (reductio ad absurdum) method, 

which had been used by Euclid and other mathematicians after him. Logically, 1 or 2 examples 

of “contradiction” should be sufficient proof of infinity, for it does not make sense to have a need 

for an infinite number of cases of “contradiction”, as our proof would then have to be infinitely 

and impossibly long, an absurdity. This method of proof is “proof by implication” as a result of 

“contradiction” - which is a “short-cut” and smart way in proving infinity, instead of “proving 

infinity by counting to infinity”, which is ludicrous, and, impossible. Hence, 1 or 2 cases of 

“contradiction” should be sufficient for implying that there would be an infinitude of even 

numbers which are sums of 2 primes, which of course also tacitly implies that there would be an 

infinitude of the number of cases of such “contradiction”. (Euclid evidently had this logical point 

in mind when he formulated the indirect (reductio ad absurdum) proof of the infinity of the 

primes.) This method of proof had been cleverly used by a number of mathematicians, not the 

least by the great German mathematician, David Hilbert. For example, Hilbert had used an 

indirect method (the “reductio ad absurdum” proof) to prove Gordan’s Theorem without having 

to show an actual “construction”, a proof which had been accepted by his peers.             

 

One important query here, which many might not have considered: What if the list of 

prime numbers is not infinite? Of course, if that is the case, the Goldbach conjecture 

would be false. It would then have been absurd for the Goldbach conjecture to have been 

conceived at all. However, the list of primes is infinite (vide Euclid’s proof). This gives 

credence to the Goldbach conjecture.  

 

A very important related point must be highlighted here. If the Goldbach conjecture were 

indeed false, there must be an ultimate (largest) even number which is (and must 

necessarily be) the result of the summation of 2 primes that are each the largest existing 

prime. It must be noted that this is actually an impossibility, as there can never be a largest 

existing prime - by Euclid’s proof, the primes are infinite (refer to argument just above). 

Hence, the Goldbach conjecture cannot be false, and, by both reductio ad absurdum 

(contradiction), and, induction (wherein all even numbers up to 12 x 10
17

,
 
a long, 

impressive list,
 
had been confirmed to be sums of 2 primes), has to be true. 

  

Another very important point is that the Goldbach conjecture becomes evidently stronger 

and stronger the higher up the infinite list of prime numbers/even numbers we go, as has 

been shown above. Thus, by implication, induction, extrapolation, it could be concluded 

that the Goldbach conjecture is valid - that every even number after 2 is the sum of 2 

primes.  

 

So far, there has been no indication or confirmation at all that the number of even numbers 

after the number 2 which are each the sum of 2 primes is finite and the largest existing 

even number which is the sum of 2 primes has not been found and confirmed. (This would 

of course be the case if the Goldbach conjecture is true.) Also, no counter-example (i.e., an 
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even number which is never the sum of 2 primes) has been found so far. On the other 

hand, practically everyone could intuit that the list of even numbers after the number 2 

which are each the sum of 2 primes is infinite. Besides, the evidence, as shown in this 

paper, is strongly in support of the infinity of this list.  

 

 

APPENDIX 1 

(20)  Set Of Integers, 1,201 To 1,250, With 8 Primes Within It 

        (a)  Primes: 1,201; 1,213; 1,217; 1,223; 1,229; 1,231; 1,237 and 1,249 

        (b)  No. Of Primes: 8 

        (c)  No. Of Even Numbers “Generated” (Including Repetitions) By The 8 Primes =  

               648 (1,204 [1,201 + 3] To 2,498 [1,249 + 1,249]) 

        (d)  No. Of New Even Numbers “Generated” = 56 (2,388 To 2,498) 

        (e)  No. Of Old/Repeated (Also Appeared In (19) Above, With Some Also Having  

              Appeared In (18), (17), (16), (15), (14), (13), (12), (11), (10), (9) And (8)  

              Above) Even Numbers “Generated” (I.e., Repetitions/Overlaps) = 592 (1,204 To 2,386) 

        (f)  Density Of New Even Numbers “Generated” = (d) ÷ 8 Primes = 56 ÷ 8 = 7 New  

              Even Numbers Per Prime Number  

 

 

APPENDIX 2 

(8)  8 th. Batch Of 30 Even Numbers (424 To 482) - Partitions/“Prime + Prime = Even Number”  

       Combinations 

      (a)   424: No. Of Above-mentioned Prime Additions/Combinations = 12 

      (b)   426: No. Of Above-mentioned Prime Additions/Combinations = 21 

      (c)   428: No. Of Above-mentioned Prime Additions/Combinations = 9 

      (d)   430: No. Of Above-mentioned Prime Additions/Combinations = 14 

      (e)   432: No. Of Above-mentioned Prime Additions/Combinations = 19 

      (f)    434: No. Of Above-mentioned Prime Additions/Combinations = 14 

      (g)   436: No. Of Above-mentioned Prime Additions/Combinations = 11 

      (h)   438: No. Of Above-mentioned Prime Additions/Combinations = 22 

      (i)    440: No. Of Above-mentioned Prime Additions/Combinations = 15 

      (j)    442: No. Of Above-mentioned Prime Additions/Combinations = 13 

      (k)   444: No. Of Above-mentioned Prime Additions/Combinations = 22 

      (l)    446: No. Of Above-mentioned Prime Additions/Combinations = 12 

      (m)  448: No. Of Above-mentioned Prime Additions/Combinations = 13 

      (n)   450: No. Of Above-mentioned Prime Additions/Combinations = 29 

      (o)   452: No. Of Above-mentioned Prime Additions/Combinations = 14 

      (p)   454: No. Of Above-mentioned Prime Additions/Combinations = 12 

      (q)   456: No. Of Above-mentioned Prime Additions/Combinations = 26 

      (r)    458: No. Of Above-mentioned Prime Additions/Combinations = 9 
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      (s)   460: No. Of Above-mentioned Prime Additions/Combinations = 17 

      (t)    462: No. Of Above-mentioned Prime Additions/Combinations = 30 

      (u)   464: No. Of Above-mentioned Prime Additions/Combinations = 13 

      (v)   466: No. Of Above-mentioned Prime Additions/Combinations = 14 

      (w)  468: No. Of Above-mentioned Prime Additions/Combinations = 26 

      (x)   470: No. Of Above-mentioned Prime Additions/Combinations = 16 

      (y)   472: No. Of Above-mentioned Prime Additions/Combinations = 14 

      (z)   474: No. Of Above-mentioned Prime Additions/Combinations = 24 

      (aa) 476: No. Of Above-mentioned Prime Additions/Combinations = 14 

      (bb) 478: No. Of Above-mentioned Prime Additions/Combinations = 12 

      (cc)  480: No. Of Above-mentioned Prime Additions/Combinations = 30 

      (dd) 482: No. Of Above-mentioned Prime Additions/Combinations = 11 

      (i)    Maximum No. Of Prime Additions/Combinations = 30 

      (ii)   Minimum No. Of Prime Additions/Combinations = 9 

      (iii)  Total No. Of Prime Additions/Combinations For (a) To (dd) = 508 

      (iv)  Total No. Of Even Numbers = 30 

      (v)   Density Of Distribution = Average Prime Additions/Combinations Per Even  

              Number = (iii) ÷ (iv) = 508 ÷ 30 = 16.93 Prime Additions/Combinations Per  

              Even Number 
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