An approximation for primes

Martin Schlueter
schlueter [underscore] martin [at] web [dot] de
http://allharmonic.wordpress.com

Abstract

An approximation heuristic for the prime counting function $\pi(x)$ is presented. The presented approximation heuristic is on average as good as $\operatorname{Li}(x)-\frac{1}{2} L i(\sqrt{x})$ for x values up to 100,000 . The main advantage of the heuristic is, that it does not require an integral to be evaluated. The main disadvantage of the heuristic is, that it gives bad approximations for $x \in\{1,2,3\}$. The heuristic is briefly motivated and then directly presented in mathematical and source code form (Matlab/Octave). Its effectiveness is visually illustrated by some plots.

1 Motivation

It can be observed, that the following approximation of $\pi(x)$ and $L i(x)=\int_{2}^{x} 1 / \log (t) d t$ holds well for x up to some thousands (H_{x} is the x-th harmonic number and γ is Euler's constant):

$$
\begin{aligned}
\pi(x) & \approx I_{e}(x):=\frac{x}{H_{x}-e \gamma} \\
L i(x) & \approx \quad I_{\pi}(x):=\frac{x}{H_{x}-\pi \gamma}
\end{aligned}
$$

Figure 1: Observe how $I_{e}(x)$ fits $\pi(x)$ and how $I_{p i}(x)$ fits $\operatorname{Li}(x)$

Figure 2: Observe how $I_{e}(x)$ fits $\pi(x)$ and how $I_{p i}(x)$ fits $L i(x)$

However, the above relationship does not hold for larger values of x, as $\pi(x)$ and $L i(x)$ appear to move towards the inner region defined by $I_{e}(x)$ and $I_{p i}(x)$. In an attempt to receive a better approximation for larger values of x, a convex combination of $I_{e}(x)$ and $I_{p i}(x)$ is proposed.

2 Approximation heuristic for $\pi(x)$

The approximation heuristic for $\pi(x)$ is as follows:

$$
\pi(x) \approx A(x) \quad:=x \cdot\left(\frac{\frac{1}{H_{x}}+\gamma}{H_{x}-e \gamma}+\frac{1-\gamma-\frac{1}{H_{x}}}{H_{x}-\pi \gamma}\right)-e
$$

where

$$
H_{x}=\sum_{i=1}^{x} \frac{1}{i} \quad \text { (Harmonic number) }
$$

and

$$
\begin{aligned}
\gamma & =0.577 \ldots & & \text { (Euler-Mascheroni constant) } \\
e & =2.718 \ldots & & \text { (Euler number) } \\
\pi & =3.141 \ldots & & \text { (Circle constant) }
\end{aligned}
$$

A computational effective implementation is as follows (approximating H_{x} by $\log (x)+\gamma$)

```
function main
for x=4:100
    % Calculate prime counting function Pi(x)
    Pi(x) = size(primes(x),2);
    % Calculate approximation heuristic A(x)
    H = log(x) + 0.577; h = 1/H;
    A(x) = x* ((h+0.577)/(H-1.569)+(0.423-h)/(H-1.813))-2.718;
end
% Plot Pi(x) [BLUE] and its Approximation A(x) [RED]
plot(Pi);hold on; plot(A,'r'); legend('Pi(x)','A(x)','Location','SouthEast');hold off
```


3 Graphical illustration of $\pi(x)$ approximation by $A(x)$

Figure 3: Plot of $\pi(x)$ (blue) and $A(x)$ (red) for $x=4, \ldots, 100$.

Figure 4: Plot of $\pi(x)$ (blue) and $A(x)$ (red) for $x=4, \ldots, 500$.

Figure 5: Plot of $\pi(x)$ (blue) and $A(x)$ (red) for $x=4, \ldots, 1000$.

Figure 6: Plot of $\pi(x)$ (blue) and $A(x)$ (red) for $x=4, \ldots, 10000$.

Figure 7: Plot of $\pi(x)$ (blue) and $A(x)$ (red) for $x=4, \ldots, 100000$.

Figure 8: Comparison with $\operatorname{Li}(x)-\frac{1}{2} \operatorname{Li}(\sqrt{x})$ for $x=4, \ldots, 100$.

Figure 9: Comparison with $\operatorname{Li}(x)-\frac{1}{2} \operatorname{Li}(\sqrt{x})$ for $x=500, \ldots, 1000$.

Figure 10: Comparison with $\operatorname{Li}(x)-\frac{1}{2} \operatorname{Li}(\sqrt{x})$ for $x=48000, \ldots, 50000$.

Figure 11: Comparison with $\operatorname{Li}(x)-\frac{1}{2} \operatorname{Li}(\sqrt{x})$ for $x=990000, \ldots, 1000000$.

Figure 12: Comparison with $\operatorname{Li}(x), \operatorname{Li}(x)-\frac{1}{2} \operatorname{Li}(\sqrt{x})$ and $x /(\log (x)-1)$.

Figure 13: Comparison with $L i(x), L i(x)-\frac{1}{2} L i(\sqrt{x})$ and $x /(\log (x)-1)$.

References

[1] Schlueter, M.: Some formulas and pattern. Preprint (2013), available at http://vixra.org/abs/1307.0078

