QUANTUM THEORY DEPENDING ON MAXWELL EQUATIONS

WU SHENG-PING

Abstract. This article try to unified the four basic forces by Maxwell equations, the only experimental theory. Self-consistent Maxwell equation with the current from electromagnetic field is proposed. and is solved to four kinds of electrons and the structures of particles. The static properties and decay and scattering are reasoned, all meet experimental data. The momentum-energy tensor of the electromagnetic field coming to the equation of general relativity is discussed. In the end that the conformation elementarily between this theory and QED and weak theory is discussed compatible, except some bias in some analysis.

Contents

1. Unit Dimension of sch 2
2. Quantization 2
3. Self-consistent Electrical-magnetic Fields 3
4. Stable Particle 4
5. Radium Function 4
6. Solution 5
7. Electrons and Their Symmetries 5
8. Mechanic Feature 7
9. Propagation and Movement 7
10. Antiparticle 10
11. Conservation Law and Balance Formula 10
12. Muon 11
13. Pion Positive 12
14. Pion Neutral 12
15. tau 12
16. Proton 13
17. Scattering 13
18. The Great Unification 15
19. Conclusion 15
References 15

Date: Jan 14, 2013.

Key words and phrases. Maxwell equations, Decay, Antiparticle.
1. **Unit Dimension of \(\hbar \)**

A rebuilding of units and physical dimensions is needed. Time \(s \) is fundamental. The velocity of light is set to 1

\[\text{Velocity} : c = 1 \]

Hence the dimension of length is

\[L : c \]

The \(\hbar \) is set to 1

\[\text{Energy} : \hbar \]

In Maxwell equations the following is set

\[\epsilon \epsilon = 1, c \mu = 1 \]

One can have

\[
\begin{align*}
\epsilon : & \quad \frac{Q^2}{\varepsilon L} \\
\mu : & \quad \frac{\varepsilon L}{c^2 Q^2}
\end{align*}
\]

Unitive Electrical Charge : \(\sigma = \sqrt{\hbar} \)

It’s very strange that the charge is analyzed as space and mass. Charge \(Q \) is then defined as \(Q/\sigma \) here,

\[
\sigma = 1.03 \times 10^{-17} C = 64e, e/\sigma = e/\sigma = 1/64 = 1.56 \times 10^{-2}
\]

\[
\begin{align*}
H : & \quad Q/(LT) : \sqrt{\hbar}/c \\
E : & \quad \varepsilon/(LT) : \sqrt{\hbar}/c
\end{align*}
\]

If \(\hbar, c \) is taken as a number instead of unit, then all physical units is described as the powers of the second: \(\text{s}^n \).

The unit of charge can be reset by *linear variation of charge-unit*

\[Q \rightarrow CQ, Q : \sigma/C \]

We will use it without detailed explanation.

2. **Quantization**

All discussion base on a explanation of quantization, or *real* probability expla-

nation for quantum theory, which bases on a Transfer Probability Matrix (TPM)

\[P_i(x)M = P_f(x) \]

As a fact, that a particle appears in a point at rate 1 is independent with appearing at another point at rate 1. There still another pairs of independent states

\[S_1 = e^{ipx}, S_2 = e^{ip'x} \]

because

\[<s_1, s_2> = \int dV s_1 s_2^* = N\delta(p - p') \]

\[<s_1, s_2> \] means make product integrated in time-space. Similarly the symbol

\[<s_1, s_2> \]

is the product integrated in space and *always means its branch of zero frequency*. In fact in the TPM formulation, it’s been accepted for granted that the Hermitian
inner-product is the measure of the dependence of two states, and it is also implied by the formula
\[P_1 M P_2^* \]
Depending on this viewpoint one can construct a wave
\[e^{ipx} \]
and gifts it with the momentum explanation \(p \), then all quantum theory is set up.

3. Self-consistent Electrical–magnetic Fields

The Maxwell equations are
\[
\frac{\partial H}{\partial t} + \nabla \times E = 0 \\
\frac{\partial E}{\partial t} - \nabla \times H + j = 0
\]

Try equation for the free E-M field
\[
A_{i,j}^{\nu} - A_{j,i}^{\nu} = iA_{\nu}^* \cdot \partial^i A^\nu/2 + cc., \quad Q_e = 1
\]

\[
Q_e = \int dV (iA_{\nu}^* \cdot \partial^i A^\nu/2 + cc.)
\]

It’s in units \(e \), in which the coefficients are 1. It’s deduced by using momentum to express current.

\[
(A^i) := (V, A), (J^i) = (\rho, J) \\
\partial := (\partial_i) := (\partial_t, \partial_{x_1}, \partial_{x_2}, \partial_{x_3}) \\
\partial' := (\partial^i) := (\partial_t, -\partial_{x_1}, -\partial_{x_2}, -\partial_{x_3})
\]

The equation 3.1 have symmetry
\[CPT, cc. PT \]

If the gauge is
\[\partial_\mu A^\mu = 0 \]
the continuous charge current meets
\[\partial_\mu \cdot j^\mu = 0 \]

The energy of field \(A \) is \(\varepsilon = \int dV (E^2 + H^2)/2 \)
\[\varepsilon = \langle \partial A | \partial A \rangle \]

Choose
\[\varepsilon = (\epsilon_i - \epsilon_f)e^{-Kt} + \epsilon_f + \sum_k a_k \sin(a_k t), a_k \in \mathbb{R} \]
with zero border condition
\[\varepsilon = \partial^2_t <A, A> + \sum_k a_k \sin(a_k' t), a_k' \in \mathbb{R} \]
then
\[K = \epsilon_i - \epsilon_f \]
4. **Stable Particle**

All particles are elementarily E-M fields is presumed. It’s trying to find stable solution of the Maxwell equations in complex domain. One can write down a function initially and correct it by re-substitution. Here is the initial state

\[V = V_i e^{-ikt}, A_i = V \]

Substituting into equation 3.1

\[\partial_\mu \partial^\mu A_i^\nu - \partial^\nu \partial_\mu A_i^\mu = 2J_i \]

\[2J_i = -\partial^\nu \partial_\mu A_i^\mu = -\partial^\nu \partial_\nu V \]

It has the properties

\[\partial \cdot J_i = 0 \]

\(J_i\) causes the initial fields \(V\), so that it is the real seed of recursive algorithm.

We can calculates the solution by recursive re-substitution for the two sides of the equation. The static fields \(E_0, H_0\)

\[(4.1) \]

\[\nabla \cdot E = i e/\sigma A_i^\nu \cdot \partial_t A_i^\nu /2 + cc. \]

\[\nabla \times H = -i e/\sigma A_i^\nu \cdot \nabla A_i^\nu /2 + cc. \]

We calls the fields’ correction \(A_n\) with \(n\) degrees of \(A_i\) the \(n\) degrees correction.

5. **Radium Function**

Firstly

\[\nabla^2 A = -k^2 A \]

is solved. Exactly, it’s solved in spherical coordinate

\[0 = r^2 \nabla^2 f + k^2 f = (r^2 f_r)_r + k^2 r^2 f + \frac{1}{\sin \theta} (\sin \theta f_\theta)_\theta + \frac{1}{\sin^2 \theta} (f_\phi)_\phi \]

Its solution is

\[f = R \Theta \Phi = R_l Y_{lm} \]

\[\Theta = P_l^m(\cos \theta), \Phi = \cos(\alpha + m\phi) \]

\[R_l = N \eta_l(kr), \eta_l(r) = r^l \int_0^\infty \frac{(1 - \lambda)^l}{(1 + \lambda)^{l+2}} \cos(\lambda r) d\lambda \]

\[\int_0^\infty dr \cdot r^2 R^2 = 1 \]

\(R\) is solved like

\[(r^2 R'_r)_r = -k^2 r^2 R + l(l+1)R, l \geq 0 \]

\[R \rightarrow r R' \]

\[(r^2 R')_{rr} = -k^2 r^2 R' + l(l+1)R' \]

\[R' \rightarrow r^{l-3} R' \]

\[r R''_{rr} + 2(l+1)R'_r + k^2 r R' = 0 \]

\[r \rightarrow r/k \]

\[(s^2 F)' + 2(l+1)F + F' = 0, F = F(R') \]

\(F()\) is the Fourier transform

\[R' = \int_0^\infty \frac{(1 - \lambda)^l}{(1 + \lambda)^{l+2}} \cos(\lambda r) d\lambda \]

The function \(R_1\) has zero derivative at \(r = 0\) and is zero as \(r \rightarrow \infty\).
6. Solution

The derivatives of the function of electron has a strange breaking point in coordinate origin hence without normal convenience of Fourier transform. The following are some proximation of the first rank. The solution of \(l = 1, m = 1, Q = e/\sigma \) is calculated or tested for electron.

\[
A_1 = NR_1(kr)Y_{1,1},
\]

The curve of \(R_1 \) is like the one in the figure 1.

The magnetic dipole moment \(\mu_z \) is calculated as the first rank of proximation

\[
\mu_z = \langle A_\nu | -i\partial_\nu | A^\nu > /2
= 1/2, k_e = 1, Q_e = 1
\]

The power of unit of charge is not equal, but it’s valid for unit \(Q = e \).

\[\frac{1}{2} = \mu_B, k_e = 1, Q_e = 1\]

7. Electrons and Their Symmetries

Some states of electrical field \(A \) are defined as the core of the electron, it’s the initial function \(A_1 = V \) for the re-substitution to get the whole electron function.

\[
e^+_r : NR_1(kr)Y_{1,1}e^{-ikt}
e^+_l : NR_1(kr)Y_{1,-1}e^{-ikt}
e^-_r : -NR_1(kr)Y_{1,1}e^{ikt}
e^-_l : -NR_1(kr)Y_{1,-1}e^{ikt}
k = m_e
\]

\(r, l \) is the direction of the spin. We use these symbols \(e \) to express the complete potential field \(A \) or the abstract particle.

Energy of static E-field crossing is discussed. In the zero rank of correction ie. the static field is

\[
e^*(i\partial_e)e = J_e, Q_e = 1
\]

then the charge is normalized

\[
Q = <e_\mu | i\partial_\mu | e^\mu > = 1, Q_e = 1
\]
Hence

\[< \partial e | \partial e > / 2 = k_e / e / \sigma, k_e = m_e \]

The static energy of electric field between \(A_0 \) is

\[\varepsilon_q = -e^3 / \sigma k_e / 2 = - \frac{1}{6.7 \times 10^{-16} s} \]

Energy of the static M-field crossing

\[\varepsilon_m = \varepsilon_e \]

Hence the gross energy is

\[\varepsilon_e = 2 \varepsilon_q = - \frac{1}{3.355 \times 10^{-16} s} \]

The value of crossing term generated by static fields between electrons are

\[\begin{align*}
\varepsilon_e & : e^+_{e_r} e^-_{e_r} e^+_l e^-_l \\
e^+_{e_r} & : E_n + M_n \\
- & \\
e^-_{e_r} & : E_n - M_n \\
e^+_l & : (-1)^{n-1} E_n + (-1)^{n/2} M_n \\
e^-_l & : (-1)^{n-1} E_n - (-1)^{n/2} M_n
\end{align*} \]

\(E : E(A_i) \) is the abstract electrical field, \(M : M(A_i) \) is the abstract magnetic field, the derivatives are solved. \(n \) is the degree of the correction. The non zero crossing in re-substitution is the crossing with \(A_i \). The higher absolute frequency than \(k_e \) is also zero.

Calculating the crossing part between \(e^+_r, e^-_l \). the non zero results of crossing is between \(A_2 \) and \(A_6 \) or between \(A_4 \).

\[\varepsilon_x \approx -e^7 / \sigma k_e / 4 \approx - \frac{1}{2.18 \times 10^{-8} s} \]

The theorem 9.6 is used. The value of this crossing term generated between electrons are

\[\begin{align*}
\varepsilon_x & e^+_{e_r} e^-_{e_r} e^+_l e^-_l \\
e^+_{e_r} & + 0 0 - \\
e^-_{e_r} & 0 + - 0 \\
e^+_l & 0 - + 0 \\
e^-_l & - 0 0 +
\end{align*} \]
8. Mechanic Feature

If the equation that connects space and E-M fields is written down for cosmos of electrons, it’s the following:

\[
R_{ij} - \frac{1}{2} R g_{ij} = 8\pi G T_{ij} / c^4
\]

\[
T_{ij} = F^k_i F_{kj} - g_{ij} F^{\mu\nu} F_{\mu\nu} / 4
\]

\(F \) is the electromagnetic tensor. This equation give mass because the space is decided by E-M fields instantly.

Because fields \(F \) is additive, the group of electrons are express by:

\[
F = \sum_i f_i \ast e_i, \langle f_i | f_i \rangle = 1
\]

The convolution is made only in space:

\[
f \ast g = \int dV f(t, y - x) g(t, x)
\]

It’s called propagation. Each \(f_i \) is normalized to 1. We always use

\[
\sum_i f_i \ast e_i, \sum_i f_i \ast \partial e_i
\]

to express its abstract construction and the field.

When the mechanical physical is discussed, observing the Energy-Momentum tensor \(T \) we have the momentum is

\[
p^\mu = T^\mu_0
\]

\[
\varepsilon = <\partial A | \partial A >, p_t = E \times B
\]

So that the spin of electron is calculated as

\[
S_e = < A | i \partial_\phi \cdot \partial_a | A > / 2 = 1/2
\]

The MDM (magnetic Dipole moment) of electron is calculated by the equation 3.1

\[
\mu_e = 1/2 < A | i \partial_\phi \cdot A > = 1/(2k_e), Q_e = 1
\]

9. Propagation and Movement

Define symbols for particle \(x \)

\[
e^{+}_{xr} := N \cdot R_1(kx) Y(1, 1) e^{-ikx t},
\]

\[
e^{+}_{xx} := (e^{+}_{xl} + e^{+}_{xr})/\sqrt{2}
\]

\[
< e_x | e_x > = 1
\]

The propagations is the \(f(x) \) in

\[
f(x) \ast e
\]

The following are stable propagation:

\[
\begin{array}{cccc}
\text{particle} & \text{electron} & \text{photon} & \text{neutrino} \\
\text{notation} & e^+ & \gamma_r & \nu_r \\
\text{structure} & e^+ & (e^+_r + e^-_r) & (e^+_r + e^-_l) \\
\end{array}
\]

By mathematic

\[
\zeta_{k, l, m}(x) := R_l(kr) Y_{l, m}, \zeta_{k}(x) := \zeta_{k, 1, \pm 1}(x)
\]
meets the following results

Theorem 9.1. C_A is a global area with its center in A and its diameter is r_A

$$\lim_{r_o=r_y \to 0} \int_{I-\sum C_i} dV \varsigma_k(x) \varsigma^*_k(x-y) = 0, y \neq O$$

For this function, it’s strange in grid origin.

Proof. Use the limit

$$\lim_{k' \to k} \lim_{r_o=r_y \to 0} \left(\int_{I-\sum C_i} dV \varsigma_k(x) \varsigma^*_k(x-y) \right)$$

We have of course:

$$\varsigma_k(r) = \int d\mathbf{p} C_\rho e^{i\mathbf{p} \cdot \mathbf{r}}, \mathbf{p}^2 = k^2$$

Theorem 9.2.

$$< f(x) * \varsigma_k | g(x) * \varsigma_k >=< f(x) | g(x) >$$

$|f|^2, |g|^2$ is integrable.

It’s proved by

$$< \sum_i a_i \varsigma_k(x-x_i)| \sum_i b_i \varsigma_k(x-x_i) >= \sum_i a^*_i b_i$$

Theorem 9.3. if $e^{i\mathbf{p} \cdot \mathbf{r}}$, ς_k is normalized to 1,

$$e^{i\mathbf{p} \cdot \mathbf{r}} * \varsigma_k = \omega e^{i\mathbf{p} \cdot \mathbf{r}}, |\omega| = 1$$

Theorem 9.4.

$$\nabla(\varsigma_k * \varsigma_{k'}) = (\nabla \varsigma_k) * \varsigma_{k'} + \varsigma_k * \nabla(\varsigma_{k'})$$

$$= -\partial_y \int dV_z I(y-x) \varsigma_k(x-y) \varsigma_{k'}(x)$$

$$= -\int dV_z I'(y-x) \varsigma_k(x) \varsigma_{k'}(x)$$

$$= \int dV_z I(x-y)(\varsigma_k(x-y) \varsigma_{k'}(x))$$

$$= \int dV_z I(z)(\varsigma_k(z) \varsigma_{k'}(z+y))_{z=x-y}$$

$$= \int dV_z (\varsigma'_k(-z) \varsigma_{k'}(z+y) + \varsigma_k(-z) \varsigma'_{k'}(z+y))$$

$$= \int dV_z (\varsigma'_k(z) \varsigma_{k'}(-z+y) + \varsigma_k(z) \varsigma'_{k'}(-z+y))$$

$$I(y-x) := \begin{cases} 0, x \neq O \\ 1, x = O \end{cases}$$

Theorem 9.5.

$$< (\nabla \varsigma_k) * \varsigma_1 | \varsigma_k * \varsigma_1 >=< k \varsigma_k * \nabla \varsigma_1 | \varsigma_k * \varsigma_1 >$$
QUANTUM THEORY DEPENDING ON MAXWELL EQUATIONS

Figure 2. The shape of distribution of radioactive momenta of electron fields in one direction: $k/(1 + k)^4 - 4k/(1 + k)^5$, calculated through spherical Bessel functions.

Theorem 9.6.

$$\varsigma_1 \ast \frac{1}{r} = \varsigma_1$$

C is relative to the measure of sampling dense of integration

$$\int dV \varsigma_1 \cdot \varsigma_1^* \cdot \varsigma_1^*$$

$$= C \int dP \cdot (\varsigma_1) \ast F(\varsigma_1^*) \ast F(\varsigma_1) \ast F(\varsigma_1^*)$$

$$= \int dP \omega \ast \omega^* \ast \omega \ast \omega^* = 1$$

Theorem 9.7.

$$< (\nabla \varsigma_1) \ast \varsigma_1 | (\nabla \varsigma_k) \ast \varsigma_1 > = < (\nabla \varsigma_k) \ast \varsigma_k | (\nabla \varsigma_1) >$$

$$= k < \varsigma_k \ast \varsigma_k | \varsigma_k \ast \varsigma_1 >$$

The figure 2 is the shape of distribution of momenta of electron function e_x.

The movement of the propagation is called Movement, ie. the third level wave, harmonic wave. The mechanical movements p of particle $e_x \ast \sum e$ by relative theory is

$$e^{iPX - ikt} \ast e_x e^{-i k_x t} \ast \sum e$$

The dual mechanical movement is

$$e^{iPX + ikt} \ast e_x e^{-i k_x t} \ast \sum e$$

The measure of the movement of the field e_x meets

$$-p^\mu p_\mu + k_x^2$$

Because the self coordinate measure of the particle e_x is k_x^2, so that

$$p^\mu p_\mu = 0, p^2 - (k^2 + k_x^2) = -k_x^2$$

The static MDM (magnetic dipole moment) is approximately by the condition 8.2

$$\mu = \sum_i < \int dx_i \cdot e_x \ast \partial e_i(x_i) | - i \mathbf{r} \times \nabla | \int dx_i \cdot e_x \ast \partial e_i(x_i) > /2, Q_e = 1$$
\[
\mu_z = \sum_i < e_x * e_i(x_i) | e_x * (-i\partial_\theta e_i(x_i)) > \frac{ke}{2k_x}
\]

Its spin is approximately
\[
S_z = \sum_i < \int dx \cdot e_x * \partial e_i(x_i) | -\partial_\partial \partial | \int dx \cdot e_x * \partial e_i(x_i) > /2, Q_e = 1
\]
\[
= \sum_i < e_x * e_i(x_i) | e_x * (-i\partial_\theta e_i(x_i)) > k_{e_i}/2
\]

Mechanical spin decouples between electrons.
Calculating the following coupling system
\[
F = e_x * \sum_i \partial e_i
\]
\[
\partial \cdot \partial' e_x = 0
\]
(9.1)
\[
e_x = e^{-iNT} \varsigma N, N \approx < \partial A | \partial A > /2, Q_e = 1
\]

10. ANTIPARTICLE

Antimatter is the positive matter reverse world-line (PT), so that it meets
\[
\partial_\nu \partial' A^i = -ie/\sigma A_\nu^* \cdot \partial A /2 + cc.
\]

From
\[
\partial_\nu \partial' (A^i(x) + B) = ie/\sigma (-A_\nu(x) + B)^* \cdot \partial (A_\nu(x) + B)/2 + cc.
\]
We have
\[
\partial_\nu \partial' (A^i(-x) + B) = ie/\sigma (A_\nu(-x) + B)^* \cdot \partial (A_\nu(-x) + B)/2 + cc.
\]

B is outer field the particle is in. If \(A(x)\) describes positive matter, \(A(-x)\) is describes antimatter, we define
\[
\overline{A(x)} := A(-x)
\]
We have the reaction in four-dimension map
\[
p \rightarrow A(x) \rightarrow \bullet \rightarrow p',
\]
equivalent to
\[
p \rightarrow \bullet \rightarrow A(-x), \rightarrow p'
\]
and
\[
\overline{e_i} \approx e_i
\]

11. CONSERVATION LAW AND BALANCE FORMULA

No matter in E-M fields level or in movement (the third) level, the conservation law is conservation of momentum and conservation of angular momentum. A balance formula for a reaction is the equivalent formula in positive matter, ie. after all anti-matter is shifted to the other side of the reaction formula. Balance formula is suitable for the analysis of the energy transition of E-M fields in the reaction. The invariance of electron itself in reaction is also a conservation law.
12. Muon

Generally, there are kinds of energy increments.

Weak coupling

\[W : < e^+_r | e^-_l > \]

Light coupling

\[L : < e^+_r | e^-_r > \]

Weak side coupling

\[Ws : < e^+_r | e^-_l > - < e_x^+ * e^{ipx} * e^-_l > \]

Light side coupling

\[Ls : < e^+_r | e^-_r > - < e_x^+ * e^{ipx} * e^-_r > \]

Strong coupling

\[S : < e^+_r | e^+_r > \]

Because of the degrees of the derivatives the anti-matter couplings are the same except the strong coupling.

\[\mu \] is composed of

\[\mu^+_r : e^+ \mu * (e^+_r + \nu \overline{\mu}) \]

From the equation 8.1 and 9.1 and the other deductive, \(\mu \) is with mass

\[3 \times 64 k_e / \sigma = 3 \times 64 k_e, \] spin \(1/2, MDM \mu_B k_e / k_\mu. \)

The main channel of decay

\[\mu^+_r \rightarrow M^+_l + \nu_l \]

\[M^+_l = e_M * (e^+_l + \nu_l) \]

\[e^+_r * e^+_l + e^{-ip_1x} * e^-_M * e^+_l + e^{ip_2x} * \nu_l \rightarrow e^+_r * \nu_l + e^{ip_1x} * e^-_M \nu_l \]

The outer waves \(e^+_r \) and \(e^{-ip_1x} * e^+_M, e^+_r \) and \(e^{ip_2x} \) are coupling. The energy difference is kind of \(Ws \), the interacting field is \(E \) that between \(A_2, A_6. \)

\[2 < e^+_r \partial e^+_l | \overline{e^+_r} \partial e^-_l > - 2 < e^+_r \partial e^+_r | e^{ip_{1r} + ik_{\mu r} t} \partial e^-_r > \]

\[p_{1r}^{\mu} p_{1\mu} = 0 \]

\[= 2(1 - k_{\mu} / \overline{k_{1r} + k_e}) < e^+_r \partial e^+_l | e^{ip_{1r} + ik_{\mu r} t} \partial e^-_r > \]

\[= 2(1 - k_{\mu} / \overline{k_{1r} + k_e}) < e^+_l \partial e^+_r | e^{ip_{1r} + ik_{\mu r} t} \partial e^-_r > \]

sum up in spectrum of \(p_1 : p_1^{\mu} p_{1\mu} = 0 \]

\[= 2k_e e_x / k_\mu \]

The emission of decay is

\[= - \frac{1}{2.1 \times 10^{-6} s} [2.1970 \times 10^{-6} s][1] \]
The data in square bracket is experimental data of the full width. The decay of particle M is like a scattering with no energy emission

$$M^+ \rightarrow e^-_l + \nu_l$$

13. Pion Positive

Pion positive is

$$\pi^-_l : e_\pi^- = (e_r^- + e_l^-) + e_\pi^+ + e_\mu^- + e_\nu_l$$

It’s with mass $5 \times 64 m_e$, spin 1/2 and MDM $\mu_B k_e/k_{\pi^+}$. Decay Channels:

$$\pi^-_l \rightarrow \mu^-_l + \nu_r$$

It’s with balance formula

$$e^*_\pi^- + e^*_\mu^- + e^*_\nu_l + e^*_\nu_r \rightarrow e^*_\pi^- + e^*_\mu^- + e^*_\nu_l + e^*_\nu_r$$

The emission of energy is kind of W

$$\varepsilon_x = -\frac{1}{2.18 \times 10^{-8}s} \quad [(2.603 \times 10^{-8}s)]$$

The referenced data is the full width.

14. Pion Neutral

Pion neutral is atom-like particle

$$\pi^0 = e_\pi^0 + e_\nu_r + e_\nu_l$$

It has mass $4 \times 64 m_e$, zero spin and zero MDM. Its decay modes are

$$\pi^0 \rightarrow \gamma + \gamma$$

The loss of energy is kind of L

$$4\varepsilon_e = -\frac{1}{8.39 \times 10^{-17}s} \quad [8.4 \times 10^{-17}s]$$

15. Tau

t maybe that

$$\tau^+_l : e_\tau^+ = (5e^+_r + 5e^+_l + e^+_l)$$

Its mass $51 \times 64 m_e$, spin 1/2, MDM $\mu_B k_e/k_\mu$. It has decay mode

$$\tau^+_l \rightarrow \mu^+_l + \nu_l + \overline{\nu_l}$$

$$e^*_\tau^+ + e^*_\mu^- + e^*_\nu_l + e^*_\nu_r \rightarrow e^*_\tau^+ + e^*_\mu^- + e^*_\nu_l + e^*_\nu_r$$

The energy gap is kind of L_s, $E = A_2$

$$5 < e^*_\tau^+ \partial E^+ r | e^-_r \partial E^- >$$

$$-5 < e^*_\tau^+ \partial E^+ r | e^*_\tau^- r^{-ik,t} \partial E^- >$$

$$p_\mu^l \mu \eta = 0$$

$$= 5(1 - \frac{k_r}{k_r + k_e}) < e^-_r | e^*_\tau^+ r^{-ik,t} \partial E^- >$$

$$= \frac{5\varepsilon_e}{k_r/k_e}$$
Depending on this kinds of particle including

\[q_r^{n+} := n(e_r^+, \overline{e_r}) \]

we can construct particles of great mass decaying without strong emission (light radiative), for example

\[e_L^* (q_r^{n+}, e_l^+) \]

This series of particle has included \(\mu, \tau \) and in fact almost all light radiative particles are of this kind, \(W, Z \) and Higgs particle is reasonably are of this kind, they are created in colliding. Another condition is possibly that, in the collision, the created light radioactive particle \((q_r^{n+}, e_l^+) \) with different \(n \) is mixed to some rates as to the detector can’t distinguish them.

Because the channel width decides the channel branch rates, obviously the most experimental data violate this rule. So that the channels listing after the same name of a particle in fact belong to different particles.

The particle \(K^+ \) possible is

\[K^+ = (q_r^{3+}, \nu_l + e_l^+) \rightarrow \mu^+_r + \nu_l \]

It has emission of \(Ls \).

16. Proton

Proton may be like

\[p^- : e_p^* (e_r^+ + e_r^- + e_r^+ + e_r^- + e_r^{2+}) + e_p^* (e_r^+ + e_r^- + e_r^+ + e_r^- + 2e_r^-) \]

The mass is \(27 \times 64 m_e \) that’s very close to the real mass. The MDM is calculated as \(3\mu_N \), spin is 1/2. The proton thus designed is eternal because if it decay even to the finest blocks the energy of emission is negative.

We define an unit: Mass-number Unit

\[m = m_e \sigma / c \approx 64 m_e \]

17. Scattering

The scattering can be calculated as dynamic electromagnetic mechanical theory, ie. the magnitude scattered is

\[-ie \int dV j^\mu A^\mu \]

From the equation 3.1 the operator of current is

\[2j^\mu = ie/\sigma A^\mu_\nu \partial A^\nu - ie/\sigma A^\mu \partial A^\mu_\nu, Q_e = 1 \]

The reaction is like

\[\sum_i f_i e_i \rightarrow \sum_i f_i^* e_i \]

\(e_i \) are all positive matters. The interaction between electrons

\[I(e_i, e_i) = I(J(e_i),) \]

is the cross interaction. The interaction is

\[I(j_1, j_2) = \int dV A_1 j_2, \]

\[2J = ie/\sigma A^*_f \partial A_f - ie/\sigma A^*_f \partial A^*_f, Q_e = 1 \]
For example the scattering
\[e^{ip_1} \ast e^{p_1^+} + e^{ip_2} \ast e^{p_2^-} \rightarrow e^{ip_3} \ast e^{p_3^+} + e^{ip_4} \ast e^{p_4^-} \]
The transfer is
\[i\mu \approx C(p_1' + p_3')\nu (p_2' + p_4')\nu \]
The \(p_i' \) is the \textit{cap momentum} relative to \(p_i \). And we have
\[\int dV_4 I(J(e_1),) = \varepsilon e \]
this calculation conforms to classical theory
\[iC = e^2 = \frac{\varepsilon e}{k_v e} \]

The interaction is between \(A_0 \). In the mean effect rate of transfer for the scattering of one to one particles is
\[|\mu|^2 \]
\[\frac{2k_1 \cdot 2k_2 \cdot 2k_3 \cdot 2k_4}{|p_1 - p_3|} \]
The energy gap in fact is part of interaction for example
\[e^{p_1} \ast e + e^{p_2} \ast e \rightarrow e^{p_3} \ast e + e^{p_4} \ast e \]
\(e \) is the same electron of the four kind and of the same polarization. In fact the final state includes
\[s := e_s \ast (e + e) \]

The interaction in the reaction is
\[I = I(j_{13}, j_{24}) = \int dV_4 A_{13} J_{24}^* \delta(x - G) \]
The domain \(G \) is the domain meeting Clain-Golden equation and momentum conservations, for all emitted matter. Taking the mass center system, the part generating \(s \) is
\[e + e \rightarrow s = e^{-ikt} e^{-ik_s t} \varsigma_{k_s} \ast (e + e) \]
\[k + k_s = k_1 \]
Using
\[\varsigma_{k_s} = \int dp C_p e^{ipr}, \quad p^2 = k_s^2 \]
the invariable magnitude is
\[i\mu \approx C \int dp C_p \frac{-(p + p_1)^2 + 4k_s^2}{(p - p_1)^2}, \quad p^2 = k_s \]
For a decay with two particles emission, the first order term of the scattering effect is identity of the calculation of energy difference between the initial and final state, which a easy analysis can prove.
18. The Great Unification

Firstly we redefine the unit second to simplify the equation 8.1

\[1 = 8\pi G/c^4 \]

\[(8\pi G)\tau_s C T^2 / h = 1, c = 1, h = 1 \]

The general relative equation is

\[T_{ij} = R_{ij} - g_{ij}R/2 \]

the EM equation is

\[T_{ij} = F^*_{ik} F^k_j - g_{ij} F^*_{\mu\nu} F^{\mu\nu}/4 \]

We observe that the co-invariant curvature is

\[R_{ij} = F^*_{ik} F^k_j + g_{ij} F^*_{\mu\nu} F^{\mu\nu}/8 \]

19. Conclusion

The relative theory is applied to electromagnetic wave to give the mechanism meaning of the fields, by energy-momentum tensor. In my viewpoint the sum-up of the grains (as electrons) of electromagnetic field is expression of mechanic movement. Fortunately this model explained all the effects in the known world: strong, weak and electromagnetic effects, and even subclassify them further if not add new ones. In this model the only field is electromagnetic field, and this stands for the philosophical with the point of that unified world from unique source. All depend on a simple fact: the current of matter in a system is time-invariantly zero in mass-center frame, and we can devise current of matter to analysis the E-M current. So that all effects is explained with diffusion process.

Except electron function my description of particles in fact has the same form with Quantum Electromagnetic Mechanics, and they two should reach the same result except for some little bias. But my theory isn’t compatible to the theory of quarks, the upper part of standard model, if not it is calculated in the style of Quantum Electromagnetic Mechanics. In fact, The electron function is a good promotion for the experimental model of proton that went up very early.

Underline my calculations a fact is that the electron has the same phase (electron resonance), which the Cosmos Explosion will explain, all electrons are generated in the same time an place, the same source.

References

E-mail address: hiyaho@126.com

Wuhan University, Wuhan, Hubei Province, The People’s Republic of China. Post-code: 430074